Papers
Topics
Authors
Recent
2000 character limit reached

Graph Algorithms with Neutral Atom Quantum Processors

Published 18 Mar 2024 in quant-ph | (2403.11931v1)

Abstract: Neutral atom technology has steadily demonstrated significant theoretical and experimental advancements, positioning itself as a front-runner platform for running quantum algorithms. One unique advantage of this technology lies in the ability to reconfigure the geometry of the qubit register, from shot to shot. This unique feature makes possible the native embedding of graph-structured problems at the hardware level, with profound consequences for the resolution of complex optimization and machine learning tasks. By driving qubits, one can generate processed quantum states which retain graph complex properties. These states can then be leveraged to offer direct solutions to problems or as resources in hybrid quantum-classical schemes. In this paper, we review the advancements in quantum algorithms for graph problems running on neutral atom Quantum Processing Units (QPUs), and discuss recently introduced embedding and problem-solving techniques. In addition, we clarify ongoing advancements in hardware, with an emphasis on enhancing the scalability, controllability and computation repetition rate of neutral atom QPUs.

Definition Search Book Streamline Icon: https://streamlinehq.com
References (130)
  1. John Preskill “Quantum Computing in the NISQ era and beyond” In Quantum 2, 2018, pp. 79 DOI: 10.22331/q-2018-08-06-79
  2. Olivier Ezratty “Where are we heading with NISQ?” In arXiv e-prints, 2023, pp. arXiv:2305.09518 DOI: 10.48550/arXiv.2305.09518
  3. “Quantum computing with Rydberg atom graphs” In Journal of the Korean Physical Society 82.9, 2023, pp. 827–840 DOI: 10.1007/s40042-023-00774-1
  4. “Quantum computing with neutral atoms” In Quantum 4, 2020, pp. 327 DOI: 10.22331/q-2020-09-21-327
  5. “Many-body physics with individually controlled Rydberg atoms” In Nat. Phys. 16.2, 2020, pp. 132–142 DOI: 10.1038/s41567-019-0733-z
  6. “Continuous symmetry breaking in a two-dimensional Rydberg array” In Nature 616.7958, 2023, pp. 691–695 DOI: 10.1038/s41586-023-05859-2
  7. “Erasure conversion in a high-fidelity Rydberg quantum simulator” In Nature 622.7982, 2023, pp. 273–278 DOI: 10.1038/s41586-023-06516-4
  8. “High-fidelity parallel entangling gates on a neutral-atom quantum computer” In Nature 622.7982, 2023, pp. 268–272 DOI: 10.1038/s41586-023-06481-y
  9. “High-fidelity gates and mid-circuit erasure conversion in an atomic qubit” In Nature 622.7982, 2023, pp. 279–284 DOI: 10.1038/s41586-023-06438-1
  10. “Quantum Optimization: Potential, Challenges, and the Path Forward”, 2023 arXiv:2312.02279 [quant-ph]
  11. “Quantum machine learning” In Nature 549.7671 Springer ScienceBusiness Media LLC, 2017, pp. 195–202 DOI: 10.1038/nature23474
  12. “Dipole Blockade and Quantum Information Processing in Mesoscopic Atomic Ensembles” In Phys. Rev. Lett. 87.3 American Physical Society (APS), 2001 DOI: 10.1103/physrevlett.87.037901
  13. “Microwave Engineering of Programmable X X Z Hamiltonians in Arrays of Rydberg Atoms” In PRX Quantum 3.2 APS, 2022, pp. 020303 DOI: 10.1103/PRXQuantum.3.020303
  14. “In situ equalization of single-atom loading in large-scale optical tweezer arrays” In Phys. Rev. A 106.2 APS, 2022, pp. 022611 DOI: 10.1103/PhysRevA.106.022611
  15. “Supercharged two-dimensional tweezer array with more than 1000 atomic qubits” In arXiv preprint arXiv:2310.09191, 2023 DOI: 10.1364/OPTICA.513551
  16. “A scaled local gate controller for optically addressed qubits” In arXiv preprint arXiv:2310.08539, 2023 DOI: 10.1364/OPTICA.512155
  17. “Single-Atom Trapping in Holographic 2D Arrays of Microtraps with Arbitrary Geometries” In Phys. Rev. X 4 American Physical Society, 2014, pp. 021034 DOI: 10.1103/PhysRevX.4.021034
  18. Woojun Lee, Hyosub Kim and Jaewook Ahn “Three-dimensional rearrangement of single atoms using actively controlled optical microtraps” In Opt. Express 24.9 Optica Publishing Group, 2016, pp. 9816–9825 DOI: 10.1364/OE.24.009816
  19. “Fast Quantum Gates for Neutral Atoms” In Phys. Rev. Lett. 85.10, 2000, pp. 2208–2211 DOI: 10.1103/PhysRevLett.85.2208
  20. “Observation of Rydberg blockade between two atoms” In Nat. Phys. 5.2, 2009, pp. 110–114 DOI: 10.1038/nphys1178
  21. “Observation of collective excitation of two individual atoms in the Rydberg blockade regime” In Nat. Phys. 5.2, 2009, pp. 115–118 DOI: 10.1038/nphys1183
  22. “Exponential algorithmic speedup by a quantum walk” In Proceedings of the thirty-fifth annual ACM symposium on Theory of computing, STOC03 ACM, 2003 DOI: 10.1145/780542.780552
  23. Bertrand Marchand “Positioning Atoms using optical tweezer traps”, 2020
  24. Constantin Dalyac “Quantum many-body dynamics for combinatorial optimisation and machine learning”, 2023
  25. “NMR techniques for quantum control and computation” In Rev. Mod. Phys. 76.4, 2004, pp. 1037–1069 DOI: 10.1103/RevModPhys.76.1037
  26. “A quantum processor based on coherent transport of entangled atom arrays” In Nature 604.7906, 2022, pp. 451–456 DOI: 10.1038/s41586-022-04592-6
  27. “Many-body interferometry of a Rydberg-dressed spin lattice” In Nat. Phys. 12.12, 2016, pp. 1095–1099 DOI: 10.1038/nphys3835
  28. “Realizing Distance-Selective Interactions in a Rydberg-Dressed Atom Array” In Phys. Rev. Lett. 128.11, 2022, pp. 113602 DOI: 10.1103/PhysRevLett.128.113602
  29. “Quantum Optimization for Maximum Independent Set Using Rydberg Atom Arrays” arXiv, 2018 DOI: 10.48550/ARXIV.1808.10816
  30. Michael R Garey and David S Johnson “”strong”np-completeness results: Motivation, examples, and implications” In Journal of the ACM (JACM) 25.3 ACM New York, NY, USA, 1978, pp. 499–508 DOI: 10.1145/322077.322090
  31. “Industry applications of neutral-atom quantum computing solving independent set problems” In arXiv e-prints, 2022, pp. arXiv:2205.08500 DOI: 10.48550/arXiv.2205.08500
  32. “Quantum annealing in the transverse Ising model” In Phys. Rev. E 58.5, 1998, pp. 5355–5363 DOI: 10.1103/PhysRevE.58.5355
  33. Edward Farhi, Jeffrey Goldstone and Sam Gutmann “A Quantum Approximate Optimization Algorithm” In arXiv e-prints, 2014, pp. arXiv:1411.4028 arXiv:1411.4028 [quant-ph]
  34. “Quantum Approximate Optimization Algorithm: Performance, Mechanism, and Implementation on Near-Term Devices” In Phys. Rev. X 10 American Physical Society, 2020, pp. 021067 DOI: 10.1103/PhysRevX.10.021067
  35. “Rydberg quantum wires for maximum independent set problems” In Nat. Phys. 18.7, 2022, pp. 755–759 DOI: 10.1038/s41567-022-01629-5
  36. “Quantum optimization of maximum independent set using Rydberg atom arrays” In Science 376.6598, 2022, pp. 1209–1215 DOI: 10.1126/science.abo6587
  37. “Quantum speedup for combinatorial optimization with flat energy landscapes” In arXiv preprint arXiv:2306.13123, 2023 DOI: https://doi.org/10.48550/arXiv.2306.13123
  38. Hanteng Wang, Hsiu-Chung Yeh and Alex Kamenev “Many-body localization enables iterative quantum optimization” In nature communications 13.1 Nature Publishing Group UK London, 2022, pp. 5503 DOI: 10.1038/s41467-022-33179-y
  39. “Quantum critical dynamics in a 5,000-qubit programmable spin glass” In Nature Nature Publishing Group UK London, 2023, pp. 1–6 DOI: 10.1038/s41586-023-05867-2
  40. “Circumventing superexponential runtimes for hard instances of quantum adiabatic optimization” In arXiv preprint arXiv:2306.13131, 2023 DOI: 10.1103/PhysRevResearch.6.013271
  41. “NC-approximation schemes for NP-and PSPACE-hard problems for geometric graphs” In Journal of algorithms 26.2 Elsevier, 1998, pp. 238–274 DOI: 10.1006/jagm.1997.0903
  42. Michel Fabrice Serret, Bertrand Marchand and Thomas Ayral “Solving optimization problems with Rydberg analog quantum computers: Realistic requirements for quantum advantage using noisy simulation and classical benchmarks” In Phys. Rev. A 102.5, 2020, pp. 052617 DOI: 10.1103/PhysRevA.102.052617
  43. “Cryogenic trapped-ion system for large scale quantum simulation” In Quantum Science and Technology 4.1 IOP Publishing, 2018, pp. 014004 DOI: https://doi.org/10.1063/1.4966970
  44. “Cryogenic setup for trapped ion quantum computing” In Rev. Sci. Instrum. 87.11 AIP Publishing, 2016 DOI: https://doi.org/10.1063/1.4966970
  45. “Single atoms with 6000-second trapping lifetimes in optical-tweezer arrays at cryogenic temperatures” In Phys. Rev. A 16.3 APS, 2021, pp. 034013 DOI: 10.1103/PhysRevApplied.16.034013
  46. “Single-atom trapping in a metasurface-lens optical tweezer” In PRX Quantum 3.3 APS, 2022, pp. 030316 DOI: 10.1103/PRXQuantum.3.030316
  47. “Ytterbium nuclear-spin qubits in an optical tweezer array” In Phys. Rev. X 12.2 APS, 2022, pp. 021027 DOI: 10.1103/PhysRevX.12.021027
  48. “Gray-molasses optical-tweezer loading: controlling collisions for scaling atom-array assembly” In Phys. Rev. X 9.1 APS, 2019, pp. 011057 DOI: 10.1103/PhysRevX.9.011057
  49. “D1 magic wavelength tweezers for scaling atom arrays” In Phys. Rev. Research 3.4 APS, 2021, pp. 043059 DOI: 10.1103/PhysRevResearch.3.043059
  50. “Dark-state enhanced loading of an optical tweezer array” In Phys. Rev. Lett. 130.19 APS, 2023, pp. 193402 DOI: 10.1103/PhysRevLett.130.193402
  51. “Half-minute-scale atomic coherence and high relative stability in a tweezer clock” In Nature 588.7838 Nature Publishing Group UK London, 2020, pp. 408–413 DOI: https://doi.org/10.1038/s41586-020-3009-y
  52. “Iterative assembly of 171171{}^{171}start_FLOATSUPERSCRIPT 171 end_FLOATSUPERSCRIPTYb atom arrays in cavity-enhanced optical lattices”, 2024 arXiv:2401.16177 [quant-ph]
  53. “High-fidelity detection of large-scale atom arrays in an optical lattice” In arXiv preprint arXiv:2309.04717, 2023
  54. “Synthetic three-dimensional atomic structures assembled atom by atom” In Nature 561.7721 Nature Publishing Group UK London, 2018, pp. 79–82 DOI: 10.1038/s41586-018-0450-2
  55. “Quantum simulation of Cayley-tree Ising Hamiltonians with three-dimensional Rydberg atoms” In Phys. Rev. Research 3.1 APS, 2021, pp. 013286 DOI: 10.1103/PhysRevResearch.3.013286
  56. “Scalable Multilayer Architecture of Assembled Single-Atom Qubit Arrays in a Three-Dimensional Talbot Tweezer Lattice” In Phys. Rev. Lett. 130.18 APS, 2023, pp. 180601 DOI: 10.1103/PhysRevLett.130.180601
  57. “Hardness of the Maximum Independent Set Problem on Unit-Disk Graphs and Prospects for Quantum Speedups” In arXiv preprint arXiv:2307.09442, 2023 DOI: 10.1103/PhysRevResearch.5.043277
  58. Andrew Byun, Minhyuk Kim and Jaewook Ahn “Finding the Maximum Independent Sets of Platonic Graphs Using Rydberg Atoms” In PRX Quantum 3 American Physical Society, 2022, pp. 030305 DOI: 10.1103/PRXQuantum.3.030305
  59. “Exploring the impact of graph locality for the resolution of MIS with neutral atom devices” In arXiv e-prints, 2023, pp. arXiv:2306.13373 DOI: 10.48550/arXiv.2306.13373
  60. “Microwave Engineering of Programmable X X Z Hamiltonians in Arrays of Rydberg Atoms” In PRX Quantum 3.2, 2022, pp. 020303 DOI: 10.1103/PRXQuantum.3.020303
  61. “A randomized measurement toolbox for Rydberg quantum technologies”, 2021 arXiv:2112.11046 [quant-ph]
  62. “Assembly and Coherent Control of a Register of Nuclear Spin Qubits” In Nat. Comm. 13.1 Nature Publishing Group, 2022, pp. 2779 DOI: 10.1038/s41467-022-29977-z
  63. “Logical quantum processor based on reconfigurable atom arrays” In Nature Springer ScienceBusiness Media LLC, 2023 DOI: 10.1038/s41586-023-06927-3
  64. “Independent Individual Addressing of Multiple Neutral Atom Qubits with a Micromirror-Based Beam Steering System” In App. Phys. Lett. 97.13, 2010, pp. 134101 DOI: 10.1063/1.3494526
  65. “Benchmarking an 11-Qubit Quantum Computer” In Nat. Comm. 10.1 Nature Publishing Group, 2019, pp. 5464 DOI: 10.1038/s41467-019-13534-2
  66. “Scalable Photonic Integrated Circuits for Programmable Control of Atomic Systems” arXiv, 2022 DOI: 10.48550/arXiv.2210.03100
  67. “An Integrated Photonic Engine for Programmable Atomic Control” arXiv, 2022 DOI: 10.48550/arXiv.2208.06732
  68. Simon Stastny, Hans Peter Büchler and Nicolai Lang “Functional completeness of planar Rydberg blockade structures” In Phys. Rev. B 108 American Physical Society, 2023, pp. 085138 DOI: 10.1103/PhysRevB.108.085138
  69. “Quantum Optimization with Arbitrary Connectivity Using Rydberg Atom Arrays” In PRX Quantum 4 American Physical Society, 2023, pp. 010316 DOI: 10.1103/PRXQuantum.4.010316
  70. “Rydberg-blockade-based parity quantum optimization” In Phys. Rev. Lett. 130.22 APS, 2023, pp. 220601 DOI: 10.1103/PhysRevLett.130.220601
  71. “Rydberg-atom graphs for quadratic unconstrained binary optimization problems”, 2023 arXiv:2309.14847 [quant-ph]
  72. “Quantum Programming of the Satisfiability Problem with Rydberg Atom Graphs” In arXiv e-prints, 2023, pp. arXiv:2302.14369 DOI: 10.48550/arXiv.2302.14369
  73. “A Rydberg-atom approach to the integer factorization problem”, 2024 arXiv:2312.08703 [quant-ph]
  74. Zhongda Zeng, Giuliano Giudici and Hannes Pichler “Quantum dimer models with Rydberg gadgets”, 2024 arXiv:2402.10651 [quant-ph]
  75. Linton C. Freeman “Visualizing Social Networks” In J. Soc. Struct. 1, 2000 DOI: 10.1007/978-1-4419-8462-3\_11
  76. “Network visualization and analysis of gene expression data using BioLayout Express3D” In Nature Protocols 4, 2009, pp. 1535–1550 DOI: 10.1038/nprot.2009.177
  77. Ricard V Solé “The small world of human language.” In Proceedings. Biological Sciences 268.1482, 2001, pp. 2261–2265 DOI: https://doi.org/10.1098/rspb.2001.1800
  78. J.Ben Schafer, Joseph A. Konstan and John Riedl “E-Commerce Recommendation Applications” In Data Min. Knowl. Discov. 5.1–2 USA: Kluwer Academic Publishers, 2001, pp. 115–153 DOI: 10.1023/A:1009804230409
  79. “Fraud detection: A systematic literature review of graph-based anomaly detection approaches” In Decision Support Systems 133, 2020, pp. 113303 DOI: https://doi.org/10.1016/j.dss.2020.113303
  80. Giulia Muzio, Leslie O’Bray and Karsten Borgwardt “Biological network analysis with deep learning” In Briefings in Bioinformatics 22.2, 2020, pp. 1515–1530 DOI: 10.1093/bib/bbaa257
  81. “Graph embedding techniques, applications, and performance: A survey” In Knowledge-Based Systems 151 Elsevier, 2018, pp. 78–94 DOI: 10.1016/j.knosys.2018.03.022
  82. Smriti Bhagat, Graham Cormode and S. Muthukrishnan “Node Classification in Social Networks” In Social Network Data Analytics Boston, MA: Springer US, 2011, pp. 115–148 DOI: 10.1007/978-1-4419-8462-3\_5
  83. “The Link Prediction Problem for Social Networks” In Proceedings of the Twelfth International Conference on Information and Knowledge Management, CIKM ’03 New Orleans, LA, USA: Association for Computing Machinery, 2003, pp. 556–559 DOI: 10.1145/956863.956972
  84. “Quantum Machine Learning in Feature Hilbert Spaces” In Phys. Rev. Lett. 122 American Physical Society, 2019, pp. 040504 DOI: 10.1103/PhysRevLett.122.040504
  85. “Supervised learning with quantum-enhanced feature spaces” In Nature 567.7747, 2019, pp. 209–212 DOI: 10.1038/s41586-019-0980-2
  86. “Measuring the similarity of graphs with a Gaussian boson sampler” In Phys. Rev. A 101.3 APS, 2020, pp. 032314 DOI: 10.1103/PhysRevA.101.032314
  87. “Graph kernels encoding features of all subgraphs by quantum superposition”, 2021 DOI: 10.1109/JETCAS.2022.3200837
  88. “Quantum evolution kernel: Machine learning on graphs with programmable arrays of qubits” In Phys. Rev. A 104.3, 2021, pp. 032416 DOI: 10.1103/PhysRevA.104.032416
  89. Iris Cong, Soonwon Choi and Mikhail D. Lukin “Quantum convolutional neural networks” In Nat. Phys. 15.12, 2019, pp. 1273–1278 DOI: 10.1038/s41567-019-0648-8
  90. “Quantum Graph Neural Networks”, 2019 DOI: 10.48550/arXiv.1909.12264
  91. “Geometric Deep Learning: Grids, Groups, Graphs, Geodesics, and Gauges” In CoRR abs/2104.13478, 2021 arXiv:2104.13478
  92. “Theory for Equivariant Quantum Neural Networks”, 2022 arXiv:2210.08566 [quant-ph]
  93. Péter Mernyei, Konstantinos Meichanetzidis and İsmail İlkan Ceylan “Equivariant Quantum Graph Circuits”, 2022 arXiv:2112.05261 [cs.LG]
  94. “Equivariant quantum circuits for learning on weighted graphs” In npj Quantum Information 9.1 Nature Publishing Group UK London, 2023, pp. 47 DOI: 10.1038/s41534-023-00710-y
  95. “Quantum feature maps for graph machine learning on a neutral atom quantum processor” In Phys. Rev. A 107.4, 2023, pp. 042615 DOI: 10.1103/PhysRevA.107.042615
  96. “Power of data in quantum machine learning” In Nat. Comm. 12, 2021, pp. 2631 DOI: 10.1038/s41467-021-22539-9
  97. “Neural Message Passing for Quantum Chemistry” In arXiv e-prints, 2017, pp. arXiv:1704.01212 DOI: 10.48550/arXiv.1704.01212
  98. “Group-Invariant Quantum Machine Learning” In PRX Quantum 3 American Physical Society, 2022, pp. 030341 DOI: 10.1103/PRXQuantum.3.030341
  99. “Representation theory for geometric quantum machine learning” In arXiv preprint arXiv:2210.07980, 2022 DOI: https://doi.org/10.48550/arXiv.2210.07980
  100. “Theoretical guarantees for permutation-equivariant quantum neural networks” In arXiv preprint arXiv:2210.09974, 2022 DOI: 10.1038/s41534-024-00804-1
  101. “Continuous operation of large-scale atom arrays in optical lattices”, 2024 arXiv:2402.04994 [quant-ph]
  102. “Gray-Molasses Optical-Tweezer Loading: Controlling Collisions for Scaling Atom-Array Assembly” In Phys. Rev. X 9 American Physical Society, 2019, pp. 011057 DOI: 10.1103/PhysRevX.9.011057
  103. “Efficient algorithms to solve atom reconfiguration problems. I. Redistribution-reconfiguration algorithm” In Phys. Rev. A 108.2 American Physical Society (APS), 2023 DOI: 10.1103/physreva.108.023107
  104. “Spin-resolved single-atom imaging of 6Li in free space” In Phys. Rev. A 97.6 American Physical Society (APS), 2018 DOI: 10.1103/physreva.97.063613
  105. A Buzulutskov “Advances in Cryogenic Avalanche Detectors” In Journal of Instrumentation 7.02 IOP Publishing, 2012, pp. C02025–C02025 DOI: 10.1088/1748-0221/7/02/c02025
  106. “Mid-Circuit Cavity Measurement in a Neutral Atom Array” In Phys. Rev. Lett. 129.20 American Physical Society (APS), 2022 DOI: 10.1103/physrevlett.129.203602
  107. “Designing metamaterials with quantum annealing and factorization machines” In Phys. Rev. Res. 2 American Physical Society, 2020, pp. 013319 DOI: 10.1103/PhysRevResearch.2.013319
  108. Tadayoshi Matsumori, Masato Taki and Tadashi Kadowaki “Application of QUBO solver using black-box optimization to structural design for resonance avoidance” In Sci Rep 12.1, 2022, pp. 12143 DOI: 10.1038/s41598-022-16149-8
  109. “Quantum Extremal Learning”, 2022 arXiv:2205.02807 [quant-ph]
  110. “Branch-and-bound algorithms: A survey of recent advances in searching, branching, and pruning” In Discrete Optimization 19 Elsevier, 2016, pp. 79–102 DOI: 10.1016/j.disopt.2016.01.005
  111. “Kernelization: theory of parameterized preprocessing” Cambridge University Press, 2019 DOI: 10.1017/9781107415157
  112. Jonathan Wurtz, Stefan Sack and Sheng-Tao Wang “Solving non-native combinatorial optimization problems using hybrid quantum-classical algorithms”, 2024 arXiv:2403.03153 [quant-ph]
  113. “Variational quantum algorithms” In Nature Reviews Physics 3.9 Nature Publishing Group UK London, 2021, pp. 625–644 DOI: 10.1038/s42254-021-00348-9
  114. Maria Schuld, Ilya Sinayskiy and Francesco Petruccione “The quest for a quantum neural network” In Quantum Information Processing 13 Springer, 2014, pp. 2567–2586 DOI: 10.1007/s11128-014-0809-8
  115. “Financial risk management on a neutral atom quantum processor” In Phys. Rev. Res. 5 American Physical Society, 2023, pp. 043117 DOI: 10.1103/PhysRevResearch.5.043117
  116. “QBoost: Large scale classifier training with adiabatic quantum optimization” In Journal of Machine Learning Research 25, 2012, pp. 333–348 URL: https://proceedings.mlr.press/v25/neven12/neven12.pdf
  117. Jacques Desrosiers, François Soumis and Martin Desrochers “Routing with time windows by column generation” In Networks 14.4 Wiley Online Library, 1984, pp. 545–565 DOI: 10.1002/net.3230140406
  118. Wesley Silva Coelho, Loı̈c Henriet and Louis-Paul Henry “Quantum pricing-based column-generation framework for hard combinatorial problems” In Phys. Rev. A 107.3 APS, 2023, pp. 032426 DOI: 10.1103/PhysRevA.107.032426
  119. Enrico Malaguti, Michele Monaci and Paolo Toth “An exact approach for the vertex coloring problem” In Discrete Optimization 8.2 Elsevier, 2011, pp. 174–190 DOI: 10.1016/j.disopt.2010.07.005
  120. M Yassine Naghmouchi and Wesley da Silva Coelho “Mixed Integer Linear Programming Solver Using Benders Decomposition Assisted by Neutral Atom Quantum Processor” In arXiv preprint arXiv:2402.05748, 2024 DOI: https://doi.org/10.48550/arXiv.2402.05748 Focus to learn more
  121. “GraphQNTK: Quantum Neural Tangent Kernel for Graph Data” In Advances in Neural Information Processing Systems 35 Curran Associates, Inc., 2022, pp. 6104–6118
  122. “Hybrid Quantum-Classical Graph Convolutional Network” In CoRR abs/2101.06189, 2021 arXiv:2101.06189
  123. Slimane Thabet, Romain Fouilland and Loic Henriet “Extending Graph Transformers with Quantum Computed Aggregation”, 2022 arXiv:2210.10610 [quant-ph]
  124. “Enhancing Graph Neural Networks with Quantum Computed Encodings”, 2023 arXiv:2310.20519 [quant-ph]
  125. “Two-particle quantum walks applied to the graph isomorphism problem” In Phys. Rev. A 81.5 American Physical Society (APS), 2010 DOI: 10.1103/physreva.81.052313
  126. Hsin-Yuan Huang, Richard Kueng and John Preskill “Predicting many properties of a quantum system from very few measurements” In Nat. Phys. 16.10 Nature Publishing Group UK London, 2020, pp. 1050–1057 DOI: 10.1038/s41567-020-0932-7
  127. “Weisfeiler and Leman Go Neural: Higher-Order Graph Neural Networks” In Proceedings of the AAAI Conference on Artificial Intelligence 33.01, 2019, pp. 4602–4609 DOI: 10.1609/aaai.v33i01.33014602
  128. “High-fidelity entanglement and detection of alkaline-earth Rydberg atoms” In Nat. Phys. 16.8 Nature Publishing Group UK London, 2020, pp. 857–861 DOI: 10.1038/s41567-020-0903-z
  129. “Dual-element, two-dimensional atom array with continuous-mode operation” In Phys. Rev. X 12.1 APS, 2022, pp. 011040 DOI: 10.1103/PhysRevX.12.011040
  130. “Array of Individual Circular Rydberg Atoms Trapped in Optical Tweezers” In arXiv preprint arXiv:2304.04831, 2023 DOI: 10.1103/PhysRevLett.131.093401
Citations (5)

Summary

We haven't generated a summary for this paper yet.

Whiteboard

Paper to Video (Beta)

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Continue Learning

We haven't generated follow-up questions for this paper yet.

Collections

Sign up for free to add this paper to one or more collections.

Tweets

Sign up for free to view the 1 tweet with 1 like about this paper.