Graph Algorithms with Neutral Atom Quantum Processors
Abstract: Neutral atom technology has steadily demonstrated significant theoretical and experimental advancements, positioning itself as a front-runner platform for running quantum algorithms. One unique advantage of this technology lies in the ability to reconfigure the geometry of the qubit register, from shot to shot. This unique feature makes possible the native embedding of graph-structured problems at the hardware level, with profound consequences for the resolution of complex optimization and machine learning tasks. By driving qubits, one can generate processed quantum states which retain graph complex properties. These states can then be leveraged to offer direct solutions to problems or as resources in hybrid quantum-classical schemes. In this paper, we review the advancements in quantum algorithms for graph problems running on neutral atom Quantum Processing Units (QPUs), and discuss recently introduced embedding and problem-solving techniques. In addition, we clarify ongoing advancements in hardware, with an emphasis on enhancing the scalability, controllability and computation repetition rate of neutral atom QPUs.
- John Preskill “Quantum Computing in the NISQ era and beyond” In Quantum 2, 2018, pp. 79 DOI: 10.22331/q-2018-08-06-79
- Olivier Ezratty “Where are we heading with NISQ?” In arXiv e-prints, 2023, pp. arXiv:2305.09518 DOI: 10.48550/arXiv.2305.09518
- “Quantum computing with Rydberg atom graphs” In Journal of the Korean Physical Society 82.9, 2023, pp. 827–840 DOI: 10.1007/s40042-023-00774-1
- “Quantum computing with neutral atoms” In Quantum 4, 2020, pp. 327 DOI: 10.22331/q-2020-09-21-327
- “Many-body physics with individually controlled Rydberg atoms” In Nat. Phys. 16.2, 2020, pp. 132–142 DOI: 10.1038/s41567-019-0733-z
- “Continuous symmetry breaking in a two-dimensional Rydberg array” In Nature 616.7958, 2023, pp. 691–695 DOI: 10.1038/s41586-023-05859-2
- “Erasure conversion in a high-fidelity Rydberg quantum simulator” In Nature 622.7982, 2023, pp. 273–278 DOI: 10.1038/s41586-023-06516-4
- “High-fidelity parallel entangling gates on a neutral-atom quantum computer” In Nature 622.7982, 2023, pp. 268–272 DOI: 10.1038/s41586-023-06481-y
- “High-fidelity gates and mid-circuit erasure conversion in an atomic qubit” In Nature 622.7982, 2023, pp. 279–284 DOI: 10.1038/s41586-023-06438-1
- “Quantum Optimization: Potential, Challenges, and the Path Forward”, 2023 arXiv:2312.02279 [quant-ph]
- “Quantum machine learning” In Nature 549.7671 Springer ScienceBusiness Media LLC, 2017, pp. 195–202 DOI: 10.1038/nature23474
- “Dipole Blockade and Quantum Information Processing in Mesoscopic Atomic Ensembles” In Phys. Rev. Lett. 87.3 American Physical Society (APS), 2001 DOI: 10.1103/physrevlett.87.037901
- “Microwave Engineering of Programmable X X Z Hamiltonians in Arrays of Rydberg Atoms” In PRX Quantum 3.2 APS, 2022, pp. 020303 DOI: 10.1103/PRXQuantum.3.020303
- “In situ equalization of single-atom loading in large-scale optical tweezer arrays” In Phys. Rev. A 106.2 APS, 2022, pp. 022611 DOI: 10.1103/PhysRevA.106.022611
- “Supercharged two-dimensional tweezer array with more than 1000 atomic qubits” In arXiv preprint arXiv:2310.09191, 2023 DOI: 10.1364/OPTICA.513551
- “A scaled local gate controller for optically addressed qubits” In arXiv preprint arXiv:2310.08539, 2023 DOI: 10.1364/OPTICA.512155
- “Single-Atom Trapping in Holographic 2D Arrays of Microtraps with Arbitrary Geometries” In Phys. Rev. X 4 American Physical Society, 2014, pp. 021034 DOI: 10.1103/PhysRevX.4.021034
- Woojun Lee, Hyosub Kim and Jaewook Ahn “Three-dimensional rearrangement of single atoms using actively controlled optical microtraps” In Opt. Express 24.9 Optica Publishing Group, 2016, pp. 9816–9825 DOI: 10.1364/OE.24.009816
- “Fast Quantum Gates for Neutral Atoms” In Phys. Rev. Lett. 85.10, 2000, pp. 2208–2211 DOI: 10.1103/PhysRevLett.85.2208
- “Observation of Rydberg blockade between two atoms” In Nat. Phys. 5.2, 2009, pp. 110–114 DOI: 10.1038/nphys1178
- “Observation of collective excitation of two individual atoms in the Rydberg blockade regime” In Nat. Phys. 5.2, 2009, pp. 115–118 DOI: 10.1038/nphys1183
- “Exponential algorithmic speedup by a quantum walk” In Proceedings of the thirty-fifth annual ACM symposium on Theory of computing, STOC03 ACM, 2003 DOI: 10.1145/780542.780552
- Bertrand Marchand “Positioning Atoms using optical tweezer traps”, 2020
- Constantin Dalyac “Quantum many-body dynamics for combinatorial optimisation and machine learning”, 2023
- “NMR techniques for quantum control and computation” In Rev. Mod. Phys. 76.4, 2004, pp. 1037–1069 DOI: 10.1103/RevModPhys.76.1037
- “A quantum processor based on coherent transport of entangled atom arrays” In Nature 604.7906, 2022, pp. 451–456 DOI: 10.1038/s41586-022-04592-6
- “Many-body interferometry of a Rydberg-dressed spin lattice” In Nat. Phys. 12.12, 2016, pp. 1095–1099 DOI: 10.1038/nphys3835
- “Realizing Distance-Selective Interactions in a Rydberg-Dressed Atom Array” In Phys. Rev. Lett. 128.11, 2022, pp. 113602 DOI: 10.1103/PhysRevLett.128.113602
- “Quantum Optimization for Maximum Independent Set Using Rydberg Atom Arrays” arXiv, 2018 DOI: 10.48550/ARXIV.1808.10816
- Michael R Garey and David S Johnson “”strong”np-completeness results: Motivation, examples, and implications” In Journal of the ACM (JACM) 25.3 ACM New York, NY, USA, 1978, pp. 499–508 DOI: 10.1145/322077.322090
- “Industry applications of neutral-atom quantum computing solving independent set problems” In arXiv e-prints, 2022, pp. arXiv:2205.08500 DOI: 10.48550/arXiv.2205.08500
- “Quantum annealing in the transverse Ising model” In Phys. Rev. E 58.5, 1998, pp. 5355–5363 DOI: 10.1103/PhysRevE.58.5355
- Edward Farhi, Jeffrey Goldstone and Sam Gutmann “A Quantum Approximate Optimization Algorithm” In arXiv e-prints, 2014, pp. arXiv:1411.4028 arXiv:1411.4028 [quant-ph]
- “Quantum Approximate Optimization Algorithm: Performance, Mechanism, and Implementation on Near-Term Devices” In Phys. Rev. X 10 American Physical Society, 2020, pp. 021067 DOI: 10.1103/PhysRevX.10.021067
- “Rydberg quantum wires for maximum independent set problems” In Nat. Phys. 18.7, 2022, pp. 755–759 DOI: 10.1038/s41567-022-01629-5
- “Quantum optimization of maximum independent set using Rydberg atom arrays” In Science 376.6598, 2022, pp. 1209–1215 DOI: 10.1126/science.abo6587
- “Quantum speedup for combinatorial optimization with flat energy landscapes” In arXiv preprint arXiv:2306.13123, 2023 DOI: https://doi.org/10.48550/arXiv.2306.13123
- Hanteng Wang, Hsiu-Chung Yeh and Alex Kamenev “Many-body localization enables iterative quantum optimization” In nature communications 13.1 Nature Publishing Group UK London, 2022, pp. 5503 DOI: 10.1038/s41467-022-33179-y
- “Quantum critical dynamics in a 5,000-qubit programmable spin glass” In Nature Nature Publishing Group UK London, 2023, pp. 1–6 DOI: 10.1038/s41586-023-05867-2
- “Circumventing superexponential runtimes for hard instances of quantum adiabatic optimization” In arXiv preprint arXiv:2306.13131, 2023 DOI: 10.1103/PhysRevResearch.6.013271
- “NC-approximation schemes for NP-and PSPACE-hard problems for geometric graphs” In Journal of algorithms 26.2 Elsevier, 1998, pp. 238–274 DOI: 10.1006/jagm.1997.0903
- Michel Fabrice Serret, Bertrand Marchand and Thomas Ayral “Solving optimization problems with Rydberg analog quantum computers: Realistic requirements for quantum advantage using noisy simulation and classical benchmarks” In Phys. Rev. A 102.5, 2020, pp. 052617 DOI: 10.1103/PhysRevA.102.052617
- “Cryogenic trapped-ion system for large scale quantum simulation” In Quantum Science and Technology 4.1 IOP Publishing, 2018, pp. 014004 DOI: https://doi.org/10.1063/1.4966970
- “Cryogenic setup for trapped ion quantum computing” In Rev. Sci. Instrum. 87.11 AIP Publishing, 2016 DOI: https://doi.org/10.1063/1.4966970
- “Single atoms with 6000-second trapping lifetimes in optical-tweezer arrays at cryogenic temperatures” In Phys. Rev. A 16.3 APS, 2021, pp. 034013 DOI: 10.1103/PhysRevApplied.16.034013
- “Single-atom trapping in a metasurface-lens optical tweezer” In PRX Quantum 3.3 APS, 2022, pp. 030316 DOI: 10.1103/PRXQuantum.3.030316
- “Ytterbium nuclear-spin qubits in an optical tweezer array” In Phys. Rev. X 12.2 APS, 2022, pp. 021027 DOI: 10.1103/PhysRevX.12.021027
- “Gray-molasses optical-tweezer loading: controlling collisions for scaling atom-array assembly” In Phys. Rev. X 9.1 APS, 2019, pp. 011057 DOI: 10.1103/PhysRevX.9.011057
- “D1 magic wavelength tweezers for scaling atom arrays” In Phys. Rev. Research 3.4 APS, 2021, pp. 043059 DOI: 10.1103/PhysRevResearch.3.043059
- “Dark-state enhanced loading of an optical tweezer array” In Phys. Rev. Lett. 130.19 APS, 2023, pp. 193402 DOI: 10.1103/PhysRevLett.130.193402
- “Half-minute-scale atomic coherence and high relative stability in a tweezer clock” In Nature 588.7838 Nature Publishing Group UK London, 2020, pp. 408–413 DOI: https://doi.org/10.1038/s41586-020-3009-y
- “Iterative assembly of 171171{}^{171}start_FLOATSUPERSCRIPT 171 end_FLOATSUPERSCRIPTYb atom arrays in cavity-enhanced optical lattices”, 2024 arXiv:2401.16177 [quant-ph]
- “High-fidelity detection of large-scale atom arrays in an optical lattice” In arXiv preprint arXiv:2309.04717, 2023
- “Synthetic three-dimensional atomic structures assembled atom by atom” In Nature 561.7721 Nature Publishing Group UK London, 2018, pp. 79–82 DOI: 10.1038/s41586-018-0450-2
- “Quantum simulation of Cayley-tree Ising Hamiltonians with three-dimensional Rydberg atoms” In Phys. Rev. Research 3.1 APS, 2021, pp. 013286 DOI: 10.1103/PhysRevResearch.3.013286
- “Scalable Multilayer Architecture of Assembled Single-Atom Qubit Arrays in a Three-Dimensional Talbot Tweezer Lattice” In Phys. Rev. Lett. 130.18 APS, 2023, pp. 180601 DOI: 10.1103/PhysRevLett.130.180601
- “Hardness of the Maximum Independent Set Problem on Unit-Disk Graphs and Prospects for Quantum Speedups” In arXiv preprint arXiv:2307.09442, 2023 DOI: 10.1103/PhysRevResearch.5.043277
- Andrew Byun, Minhyuk Kim and Jaewook Ahn “Finding the Maximum Independent Sets of Platonic Graphs Using Rydberg Atoms” In PRX Quantum 3 American Physical Society, 2022, pp. 030305 DOI: 10.1103/PRXQuantum.3.030305
- “Exploring the impact of graph locality for the resolution of MIS with neutral atom devices” In arXiv e-prints, 2023, pp. arXiv:2306.13373 DOI: 10.48550/arXiv.2306.13373
- “Microwave Engineering of Programmable X X Z Hamiltonians in Arrays of Rydberg Atoms” In PRX Quantum 3.2, 2022, pp. 020303 DOI: 10.1103/PRXQuantum.3.020303
- “A randomized measurement toolbox for Rydberg quantum technologies”, 2021 arXiv:2112.11046 [quant-ph]
- “Assembly and Coherent Control of a Register of Nuclear Spin Qubits” In Nat. Comm. 13.1 Nature Publishing Group, 2022, pp. 2779 DOI: 10.1038/s41467-022-29977-z
- “Logical quantum processor based on reconfigurable atom arrays” In Nature Springer ScienceBusiness Media LLC, 2023 DOI: 10.1038/s41586-023-06927-3
- “Independent Individual Addressing of Multiple Neutral Atom Qubits with a Micromirror-Based Beam Steering System” In App. Phys. Lett. 97.13, 2010, pp. 134101 DOI: 10.1063/1.3494526
- “Benchmarking an 11-Qubit Quantum Computer” In Nat. Comm. 10.1 Nature Publishing Group, 2019, pp. 5464 DOI: 10.1038/s41467-019-13534-2
- “Scalable Photonic Integrated Circuits for Programmable Control of Atomic Systems” arXiv, 2022 DOI: 10.48550/arXiv.2210.03100
- “An Integrated Photonic Engine for Programmable Atomic Control” arXiv, 2022 DOI: 10.48550/arXiv.2208.06732
- Simon Stastny, Hans Peter Büchler and Nicolai Lang “Functional completeness of planar Rydberg blockade structures” In Phys. Rev. B 108 American Physical Society, 2023, pp. 085138 DOI: 10.1103/PhysRevB.108.085138
- “Quantum Optimization with Arbitrary Connectivity Using Rydberg Atom Arrays” In PRX Quantum 4 American Physical Society, 2023, pp. 010316 DOI: 10.1103/PRXQuantum.4.010316
- “Rydberg-blockade-based parity quantum optimization” In Phys. Rev. Lett. 130.22 APS, 2023, pp. 220601 DOI: 10.1103/PhysRevLett.130.220601
- “Rydberg-atom graphs for quadratic unconstrained binary optimization problems”, 2023 arXiv:2309.14847 [quant-ph]
- “Quantum Programming of the Satisfiability Problem with Rydberg Atom Graphs” In arXiv e-prints, 2023, pp. arXiv:2302.14369 DOI: 10.48550/arXiv.2302.14369
- “A Rydberg-atom approach to the integer factorization problem”, 2024 arXiv:2312.08703 [quant-ph]
- Zhongda Zeng, Giuliano Giudici and Hannes Pichler “Quantum dimer models with Rydberg gadgets”, 2024 arXiv:2402.10651 [quant-ph]
- Linton C. Freeman “Visualizing Social Networks” In J. Soc. Struct. 1, 2000 DOI: 10.1007/978-1-4419-8462-3\_11
- “Network visualization and analysis of gene expression data using BioLayout Express3D” In Nature Protocols 4, 2009, pp. 1535–1550 DOI: 10.1038/nprot.2009.177
- Ricard V Solé “The small world of human language.” In Proceedings. Biological Sciences 268.1482, 2001, pp. 2261–2265 DOI: https://doi.org/10.1098/rspb.2001.1800
- J.Ben Schafer, Joseph A. Konstan and John Riedl “E-Commerce Recommendation Applications” In Data Min. Knowl. Discov. 5.1–2 USA: Kluwer Academic Publishers, 2001, pp. 115–153 DOI: 10.1023/A:1009804230409
- “Fraud detection: A systematic literature review of graph-based anomaly detection approaches” In Decision Support Systems 133, 2020, pp. 113303 DOI: https://doi.org/10.1016/j.dss.2020.113303
- Giulia Muzio, Leslie O’Bray and Karsten Borgwardt “Biological network analysis with deep learning” In Briefings in Bioinformatics 22.2, 2020, pp. 1515–1530 DOI: 10.1093/bib/bbaa257
- “Graph embedding techniques, applications, and performance: A survey” In Knowledge-Based Systems 151 Elsevier, 2018, pp. 78–94 DOI: 10.1016/j.knosys.2018.03.022
- Smriti Bhagat, Graham Cormode and S. Muthukrishnan “Node Classification in Social Networks” In Social Network Data Analytics Boston, MA: Springer US, 2011, pp. 115–148 DOI: 10.1007/978-1-4419-8462-3\_5
- “The Link Prediction Problem for Social Networks” In Proceedings of the Twelfth International Conference on Information and Knowledge Management, CIKM ’03 New Orleans, LA, USA: Association for Computing Machinery, 2003, pp. 556–559 DOI: 10.1145/956863.956972
- “Quantum Machine Learning in Feature Hilbert Spaces” In Phys. Rev. Lett. 122 American Physical Society, 2019, pp. 040504 DOI: 10.1103/PhysRevLett.122.040504
- “Supervised learning with quantum-enhanced feature spaces” In Nature 567.7747, 2019, pp. 209–212 DOI: 10.1038/s41586-019-0980-2
- “Measuring the similarity of graphs with a Gaussian boson sampler” In Phys. Rev. A 101.3 APS, 2020, pp. 032314 DOI: 10.1103/PhysRevA.101.032314
- “Graph kernels encoding features of all subgraphs by quantum superposition”, 2021 DOI: 10.1109/JETCAS.2022.3200837
- “Quantum evolution kernel: Machine learning on graphs with programmable arrays of qubits” In Phys. Rev. A 104.3, 2021, pp. 032416 DOI: 10.1103/PhysRevA.104.032416
- Iris Cong, Soonwon Choi and Mikhail D. Lukin “Quantum convolutional neural networks” In Nat. Phys. 15.12, 2019, pp. 1273–1278 DOI: 10.1038/s41567-019-0648-8
- “Quantum Graph Neural Networks”, 2019 DOI: 10.48550/arXiv.1909.12264
- “Geometric Deep Learning: Grids, Groups, Graphs, Geodesics, and Gauges” In CoRR abs/2104.13478, 2021 arXiv:2104.13478
- “Theory for Equivariant Quantum Neural Networks”, 2022 arXiv:2210.08566 [quant-ph]
- Péter Mernyei, Konstantinos Meichanetzidis and İsmail İlkan Ceylan “Equivariant Quantum Graph Circuits”, 2022 arXiv:2112.05261 [cs.LG]
- “Equivariant quantum circuits for learning on weighted graphs” In npj Quantum Information 9.1 Nature Publishing Group UK London, 2023, pp. 47 DOI: 10.1038/s41534-023-00710-y
- “Quantum feature maps for graph machine learning on a neutral atom quantum processor” In Phys. Rev. A 107.4, 2023, pp. 042615 DOI: 10.1103/PhysRevA.107.042615
- “Power of data in quantum machine learning” In Nat. Comm. 12, 2021, pp. 2631 DOI: 10.1038/s41467-021-22539-9
- “Neural Message Passing for Quantum Chemistry” In arXiv e-prints, 2017, pp. arXiv:1704.01212 DOI: 10.48550/arXiv.1704.01212
- “Group-Invariant Quantum Machine Learning” In PRX Quantum 3 American Physical Society, 2022, pp. 030341 DOI: 10.1103/PRXQuantum.3.030341
- “Representation theory for geometric quantum machine learning” In arXiv preprint arXiv:2210.07980, 2022 DOI: https://doi.org/10.48550/arXiv.2210.07980
- “Theoretical guarantees for permutation-equivariant quantum neural networks” In arXiv preprint arXiv:2210.09974, 2022 DOI: 10.1038/s41534-024-00804-1
- “Continuous operation of large-scale atom arrays in optical lattices”, 2024 arXiv:2402.04994 [quant-ph]
- “Gray-Molasses Optical-Tweezer Loading: Controlling Collisions for Scaling Atom-Array Assembly” In Phys. Rev. X 9 American Physical Society, 2019, pp. 011057 DOI: 10.1103/PhysRevX.9.011057
- “Efficient algorithms to solve atom reconfiguration problems. I. Redistribution-reconfiguration algorithm” In Phys. Rev. A 108.2 American Physical Society (APS), 2023 DOI: 10.1103/physreva.108.023107
- “Spin-resolved single-atom imaging of 6Li in free space” In Phys. Rev. A 97.6 American Physical Society (APS), 2018 DOI: 10.1103/physreva.97.063613
- A Buzulutskov “Advances in Cryogenic Avalanche Detectors” In Journal of Instrumentation 7.02 IOP Publishing, 2012, pp. C02025–C02025 DOI: 10.1088/1748-0221/7/02/c02025
- “Mid-Circuit Cavity Measurement in a Neutral Atom Array” In Phys. Rev. Lett. 129.20 American Physical Society (APS), 2022 DOI: 10.1103/physrevlett.129.203602
- “Designing metamaterials with quantum annealing and factorization machines” In Phys. Rev. Res. 2 American Physical Society, 2020, pp. 013319 DOI: 10.1103/PhysRevResearch.2.013319
- Tadayoshi Matsumori, Masato Taki and Tadashi Kadowaki “Application of QUBO solver using black-box optimization to structural design for resonance avoidance” In Sci Rep 12.1, 2022, pp. 12143 DOI: 10.1038/s41598-022-16149-8
- “Quantum Extremal Learning”, 2022 arXiv:2205.02807 [quant-ph]
- “Branch-and-bound algorithms: A survey of recent advances in searching, branching, and pruning” In Discrete Optimization 19 Elsevier, 2016, pp. 79–102 DOI: 10.1016/j.disopt.2016.01.005
- “Kernelization: theory of parameterized preprocessing” Cambridge University Press, 2019 DOI: 10.1017/9781107415157
- Jonathan Wurtz, Stefan Sack and Sheng-Tao Wang “Solving non-native combinatorial optimization problems using hybrid quantum-classical algorithms”, 2024 arXiv:2403.03153 [quant-ph]
- “Variational quantum algorithms” In Nature Reviews Physics 3.9 Nature Publishing Group UK London, 2021, pp. 625–644 DOI: 10.1038/s42254-021-00348-9
- Maria Schuld, Ilya Sinayskiy and Francesco Petruccione “The quest for a quantum neural network” In Quantum Information Processing 13 Springer, 2014, pp. 2567–2586 DOI: 10.1007/s11128-014-0809-8
- “Financial risk management on a neutral atom quantum processor” In Phys. Rev. Res. 5 American Physical Society, 2023, pp. 043117 DOI: 10.1103/PhysRevResearch.5.043117
- “QBoost: Large scale classifier training with adiabatic quantum optimization” In Journal of Machine Learning Research 25, 2012, pp. 333–348 URL: https://proceedings.mlr.press/v25/neven12/neven12.pdf
- Jacques Desrosiers, François Soumis and Martin Desrochers “Routing with time windows by column generation” In Networks 14.4 Wiley Online Library, 1984, pp. 545–565 DOI: 10.1002/net.3230140406
- Wesley Silva Coelho, Loı̈c Henriet and Louis-Paul Henry “Quantum pricing-based column-generation framework for hard combinatorial problems” In Phys. Rev. A 107.3 APS, 2023, pp. 032426 DOI: 10.1103/PhysRevA.107.032426
- Enrico Malaguti, Michele Monaci and Paolo Toth “An exact approach for the vertex coloring problem” In Discrete Optimization 8.2 Elsevier, 2011, pp. 174–190 DOI: 10.1016/j.disopt.2010.07.005
- M Yassine Naghmouchi and Wesley da Silva Coelho “Mixed Integer Linear Programming Solver Using Benders Decomposition Assisted by Neutral Atom Quantum Processor” In arXiv preprint arXiv:2402.05748, 2024 DOI: https://doi.org/10.48550/arXiv.2402.05748 Focus to learn more
- “GraphQNTK: Quantum Neural Tangent Kernel for Graph Data” In Advances in Neural Information Processing Systems 35 Curran Associates, Inc., 2022, pp. 6104–6118
- “Hybrid Quantum-Classical Graph Convolutional Network” In CoRR abs/2101.06189, 2021 arXiv:2101.06189
- Slimane Thabet, Romain Fouilland and Loic Henriet “Extending Graph Transformers with Quantum Computed Aggregation”, 2022 arXiv:2210.10610 [quant-ph]
- “Enhancing Graph Neural Networks with Quantum Computed Encodings”, 2023 arXiv:2310.20519 [quant-ph]
- “Two-particle quantum walks applied to the graph isomorphism problem” In Phys. Rev. A 81.5 American Physical Society (APS), 2010 DOI: 10.1103/physreva.81.052313
- Hsin-Yuan Huang, Richard Kueng and John Preskill “Predicting many properties of a quantum system from very few measurements” In Nat. Phys. 16.10 Nature Publishing Group UK London, 2020, pp. 1050–1057 DOI: 10.1038/s41567-020-0932-7
- “Weisfeiler and Leman Go Neural: Higher-Order Graph Neural Networks” In Proceedings of the AAAI Conference on Artificial Intelligence 33.01, 2019, pp. 4602–4609 DOI: 10.1609/aaai.v33i01.33014602
- “High-fidelity entanglement and detection of alkaline-earth Rydberg atoms” In Nat. Phys. 16.8 Nature Publishing Group UK London, 2020, pp. 857–861 DOI: 10.1038/s41567-020-0903-z
- “Dual-element, two-dimensional atom array with continuous-mode operation” In Phys. Rev. X 12.1 APS, 2022, pp. 011040 DOI: 10.1103/PhysRevX.12.011040
- “Array of Individual Circular Rydberg Atoms Trapped in Optical Tweezers” In arXiv preprint arXiv:2304.04831, 2023 DOI: 10.1103/PhysRevLett.131.093401
Sponsor
Paper Prompts
Sign up for free to create and run prompts on this paper using GPT-5.
Top Community Prompts
Collections
Sign up for free to add this paper to one or more collections.