Radiative loss and ion-neutral collisional effects in astrophysical plasmas (2403.11900v1)
Abstract: In this paper we study the role of radiative cooling in a two-fluid model consisting of coupled neutrals and charged particles. We first analyze the linearized two-fluid equations where we include radiative losses in the energy equation for the charged particles. In a 1D geometry for parallel propagation and in the limiting cases of weak and strong coupling, it can be shown analytically that the instability conditions for the thermal mode and the sound waves, the isobaric and isentropic criteria, respectively, remain unchanged with respect to one-fluid radiative plasmas. For the parameters considered in this paper, representative for the solar corona, the radiative cooling produces growth of the thermal mode and damping of the sound waves. When neutrals are included and are sufficiently coupled to the charges, the thermal mode growth rate and the wave damping both reduce by the same factor, which depends on the ionization fraction only. For a heating function which is constant in time, we find that the growth of the thermal mode and the damping of the sound waves are slightly larger. The numerical calculation of the eigenvalues of the general system of equations in a 3D geometry confirm the analytic results. We then run 2D fully nonlinear simulations which give consistent results: a higher ionization fraction or lower coupling will increase the growth rate. The magnetic field contribution is negligible in the linear phase. Ionization-recombination effects might play an important role because the radiative cooling produces a large range of temperatures in the system. In the numerical simulation, after the first condensation phase, when the minimum temperature is reached, the fraction of neutrals increases four orders of magnitude because of the recombination.
- Antiochos S., Klimchuk J. A Model for the Formation of Solar Prominences // ApJ. IX 1991. 378. 372.
- Antolin Patrick. Thermal instability and non-equilibrium in solar coronal loops: from coronal rain to long-period intensity pulsations // Plasma Physics and Controlled Fusion. I 2020. 62, 1. 014016.
- The influence of flux rope heating models on solar prominence formation // A&A. XII 2022. 668. A47.
- Claes N., Keppens R. Thermal stability of magnetohydrodynamic modes in homogeneous plasmas // A&A. IV 2019. 624. A96.
- Field G. Thermal Instability. // ApJ. VIII 1965. 142. 531.
- Waves and characteristics // Magnetohydrodynamics of Laboratory and Astrophysical Plasmas. 2019. 147–180.
- Gronke M., Oh S. Cooling-driven coagulation // MNRAS. IX 2023. 524, 1. 498–511.
- Effect of optically thin cooling curves on condensation formation: Case study using thermal instability // A&A. 2021. 655. A36.
- Jenkins J., Keppens R. Prominence formation by levitation-condensation at extreme resolutions // A&A. II 2021. 646. A134.
- Jerčić V., Keppens R. Dynamic formation of multi-threaded prominences in arcade configurations // A&A. II 2023. 670. A64.
- MPI-AMRVAC 3.0: Updates to an open-source simulation framework // A&A. V 2023. 673. A66.
- Can Thermal Nonequilibrium Explain Coronal Loops? // ApJ. V 2010. 714, 2. 1239–1248.
- Coronal Rain in Randomly Heated Arcades // ApJ. II 2022. 926, 2. 216.
- Multithermal Jet Formation Triggered by Flux Emergence // ApJ. IV 2023. 947, 1. L17.
- Liakh V., Keppens R. Rotational Flows in Solar Coronal Flux Rope Cavities // ApJ. VIII 2023. 953, 1. L13.
- Formation and Evolution of a Multi-threaded Solar Prominence // ApJ. II 2012. 746, 1. 30.
- Large Ion-neutral Drift Velocities and Plasma Heating in Partially Ionized Coronal Rain Blobs // ApJ. XII 2022. 940, 2. L47.
- Dynamics of Coronal Rain and Descending Plasma Blobs in Solar Prominences. II. Partially Ionized Case // ApJ. II 2016. 818, 2. 128.
- Elemental composition in quiescent prominences // A&A. 2019. 625. A52.
- Parker E. Instability of Thermal Fields. // ApJ. V 1953. 117. 431.
- Two-fluid implementation in MPI-AMRVAC with applications to the solar chromosphere // A&A. 2022. 664. A55.
- Magnetic field amplification and structure formation by the Rayleigh-Taylor instability // A&A. II 2023. 670. A31.
- Two-fluid simulations of waves in the solar chromosphere. I. Numerical code verification // A&A. VII 2019. 627. A25.
- Two-fluid simulations of Rayleigh-Taylor instability in a magnetized solar prominence thread. I. Effects of prominence magnetization and mass loading // A&A. II 2021a. 646. A93.
- Two-fluid simulations of Rayleigh-Taylor instability in a magnetized solar prominence thread. II. Effects of collisionality // A&A. VI 2021b. 650. A181.
- Thermal Instability in Radiation Hydrodynamics: Instability Mechanisms, Position-dependent S-curves, and Attenuation Curves // ApJ. VIII 2022. 935, 2. L37.
- Schrijver C. J. Catastrophic cooling and high-speed downflow in quiescent solar coronal loops observed with TRACE // Sol. Phys.. II 2001. 198, 2. 325–345.
- Smirnov B. M. Physics of Atoms and Ions. 2003. XIII, 443.
- Collisional ionisation, recombination, and ionisation potential in two-fluid slow-mode shocks: Analytical and numerical results // A&A. 2021. 645. A81.
- Magnetoacoustic waves in a partially ionized two-fluid plasma // The Astrophysical Journal Supplement Series. oct 2013b. 209, 1. 16.
- Alfvén Waves in a Partially Ionized Two-fluid Plasma // ApJ. IV 2013a. 767, 2. 171.
- One-dimensional prominence threads. I. Equilibrium models // A&A. IX 2021. 653. A95.
- Voronov G. S. A Practical Fit Formula for Ionization Rate Coefficients of Atoms and Ions by Electron Impact:z= 1–28 // Atomic Data and Nuclear Data Tables. 1997. 65, 1. 1 – 35.
- Dynamical Thermal Instability in Highly Supersonic Outflows // ApJ. VI 2022. 931, 2. 134.
- Coronal rain in magnetic bipolar weak fields // A&A. VII 2017. 603. A42.
- 3D MHD wave propagation near a coronal null point: New wave mode decomposition approach // A&A. 2022. 660. A21.
- Winking filaments due to cyclic evaporation-condensation // A&A. VII 2023. 675. A31.
Sponsor
Paper Prompts
Sign up for free to create and run prompts on this paper using GPT-5.
Top Community Prompts
Collections
Sign up for free to add this paper to one or more collections.