Papers
Topics
Authors
Recent
2000 character limit reached

MPC for Tracking applied to rendezvous with non-cooperative tumbling targets ensuring stability and feasibility (2403.10986v1)

Published 16 Mar 2024 in eess.SY, cs.SY, and math.OC

Abstract: A Model Predictive Controller for Tracking is introduced for rendezvous with non-cooperative tumbling targets in active debris removal applications. The target's three-dimensional non-periodic rotational dynamics as well as other state and control constraints are considered. The approach is based on applying an intermediate coordinate transformation that eliminates the time-dependency due to rotations in the constraints. The control law is then found as the solution to a QP problem with linear constraints and dynamics, as derived from the HCW equations, that provides feasibility and stability guarantees by means of a terminal LQR and dead-beat region. The proposed control algorithm performs well in a realistic simulation scenario, namely a near rendezvous with the Envisat spacecraft.

Definition Search Book Streamline Icon: https://streamlinehq.com
References (34)
  1. G. Behrendt, A. Soderlund, M. Hale, and S. Phillips, “Autonomous satellite rendezvous and proximity operations with time-constrained sub-optimal model predictive control,” IFAC-PapersOnLine, vol. 56, no. 2, pp. 9380–9385, 2023.
  2. G. Boyarko, O. Yakimenko, and M. Romano, “Optimal rendezvous trajectories of a controlled spacecraft and a tumbling object,” J. Guid. Control Dyn., vol. 34, no. 4, pp. 1239–1252, 2011.
  3. C. Buckner and R. Lampariello, “Tube-based model predictive control for the approach maneuver of a spacecraft to a free-tumbling target satellite,” in 2018 ACC.   IEEE, 2018, pp. 5690–5697.
  4. M. M. Castronuovo, “Active space debris removal—a preliminary mission analysis and design,” Acta Astronautica, vol. 69, no. 9, pp. 848–859, 2011. [Online]. Available: https://www.sciencedirect.com/science/article/pii/S0094576511001287
  5. A. Caubet and J. D. Biggs, “An inverse dynamics approach to the guidance of spacecraft in close proximity of tumbling debris,” Proceedings of 2015 IAC, vol. 7, p. 9, 2015.
  6. W. Clohessy and R. Wiltshire, “Terminal guidance system for satellite rendezvous,” Journal of the aerospace sciences, vol. 27, no. 9, pp. 653–658, 1960.
  7. K. Dong, J. Luo, and D. Limon, “A novel stable and safe model predictive control framework for autonomous rendezvous and docking with a tumbling target,” Acta Astronaut., vol. 200, pp. 176–187, 2022.
  8. A. Ferramosca, D. Limon, I. Alvarado, T. Alamo, and E. F. Camacho, “MPC for tracking with optimal closed-loop performance,” Automatica, vol. 45, pp. 1975–1978, 2009.
  9. F. Gavilan, R. Vazquez, and E. Camacho, “Chance-constrained model predictive control for spacecraft rendezvous with disturbance estimation,” Control Eng. Pract., vol. 20, no. 2, pp. 111–122, 2012.
  10. E. N. Hartley, P. A. Trodden, A. G. Richards, and J. M. Maciejowski, “Model predictive control system design and implementation for spacecraft rendezvous,” Control Eng. Pract., vol. 20, no. 7, pp. 695–713, 2012.
  11. G. W. Hill, “Researches in the lunar theory,” American journal of Mathematics, vol. 1, no. 1, pp. 5–26, 1878.
  12. J. P. How and M. Tillerson, “Analysis of the impact of sensor noise on formation flying control,” in 2001 ACC, vol. 5.   IEEE, 2001, pp. 3986–3991.
  13. D. Kucharski, G. Kirchner, F. Koidl, C. Fan, R. Carman, C. Moore, A. Dmytrotsa, M. Ploner, G. Bianco, M. Medvedskij, A. Makeyev, G. Appleby, M. Suzuki, J.-M. Torre, Z. Zhongping, L. Grunwaldt, and Q. Feng, “Attitude and spin period of space debris envisat measured by satellite laser ranging,” IEEE Transactions on Geoscience and Remote Sensing, vol. 52, no. 12, pp. 7651–7657, 2014.
  14. M. Leomanni, E. Rogers, and S. B. Gabriel, “Explicit model predictive control approach for low-thrust spacecraft proximity operations,” J. Guid. Control Dyn., vol. 37, no. 6, pp. 1780–1790, 2014.
  15. Q. Li, J. Yuan, B. Zhang, and C. Gao, “Model predictive control for autonomous rendezvous and docking with a tumbling target,” Aerospace Science and Technology, vol. 69, pp. 700–711, 2017.
  16. D. Limon, I. Alvarado, T. Alamo, and E. Camacho, “Mpc for tracking piecewise constant references for constrained linear systems,” Automatica, vol. 44, no. 9, pp. 2382–2387, 2008. [Online]. Available: https://www.sciencedirect.com/science/article/pii/S0005109808001106
  17. D. Limon, T. Alamo, D. M. Raimondo, D. M. De La Peña, J. M. Bravo, A. Ferramosca, and E. F. Camacho, “Input-to-state stability: a unifying framework for robust model predictive control,” Nonlinear Model Predictive Control: Towards New Challenging Applications, pp. 1–26, 2009.
  18. D. Limon, A. Ferramosca, I. Alvarado, and T. Alamo, “Nonlinear MPC for tracking piece-wise constant reference signals,” IEEE Transactions on Automatic Control, vol. 63, no. 11, pp. 3735–3750, 2018.
  19. M. Maiworm, D. Limon, and R. Findeisen, “Online learning-based model predictive control with gaussian process models and stability guarantees,” International Journal of Robust and Nonlinear Control, vol. 31, no. 18, pp. 8785–8812, 2021.
  20. M. Mammarella, E. Capello, H. Park, G. Guglieri, and M. Romano, “Tube-based robust model predictive control for spacecraft proximity operations in the presence of persistent disturbance,” Aerospace Science and Technology, vol. 77, pp. 585–594, 2018.
  21. J. M. Manzano, D. Limon, D. M. de la Peña, and J.-P. Calliess, “Robust learning-based MPC for nonlinear constrained systems,” Automatica, vol. 117, p. 108948, 2020.
  22. C. P. Mark and S. Kamath, “Review of active space debris removal methods,” Space Policy, vol. 47, pp. 194–206, 2019. [Online]. Available: https://www.sciencedirect.com/science/article/pii/S0265964618300110
  23. D. Morgan, S.-J. Chung, and F. Y. Hadaegh, “Model predictive control of swarms of spacecraft using sequential convex programming,” J. Guid. Control Dyn., vol. 37, no. 6, pp. 1725–1740, 2014.
  24. C. E. Oestreich, R. Linares, and R. Gondhalekar, “Tube-based model predictive control with uncertainty identification for autonomous spacecraft maneuvers,” J. Guid. Control Dyn., vol. 46, no. 1, pp. 6–20, 2023.
  25. A. Richards and J. How, “Performance evaluation of rendezvous using model predictive control,” in AIAA Guidance, Navigation, and Control Conference and Exhibit, 2003, p. 5507.
  26. J. Sanchez, F. Gavilan, and R. Vazquez, “Chance-constrained model predictive control for near rectilinear halo orbit spacecraft rendezvous,” Aerosp Sci Technol, vol. 100, p. 105827, 2020.
  27. J. Sanchez, F. Gavilan, R. Vazquez, and C. Louembet, “A flatness-based predictive controller for six-degrees of freedom spacecraft rendezvous,” Acta Astronaut., vol. 167, pp. 391–403, 2020.
  28. G. Sarego et al., “Deployment requirements for deorbiting electrodynamic tether technology,” CEAS Space J., vol. 13, p. 567–581, 2021.
  29. M. Shan, J. Guo, and E. Gill, “Review and comparison of active space debris capturing and removal methods,” Progress in Aerospace Sciences, vol. 80, pp. 18–32, 2016.
  30. S. Stoneman and R. Lampariello, “A nonlinear optimization method to provide real-time feasible reference trajectories to approach a tumbling target satellite,” in ISAIRAS 2016, vol. 13, 2016.
  31. G. Sánchez-Arriaga et al., “The e.t.pack project: Towards a fully passive and consumable-less deorbit kit based on low-work-function tether technology,” Acta Astronaut., vol. 177, p. 821–827, 2020.
  32. Y. Wang and S. Boyd, “Fast model predictive control using online optimization,” IEEE Trans. Control Syst. Technol., vol. 18, no. 2, 2009.
  33. K. Yamanaka and F. Ankersen, “New state transition matrix for relative motion on an arbitrary elliptical orbit,” J. Guid. Control Dyn., vol. 25, no. 1, pp. 60–66, 2002.
  34. L. Zhang, S. Zhang, H. Yang, H. Cai, and S. Qian, “Relative attitude and position estimation for a tumbling spacecraft,” Aerosp. Sci. Technol., vol. 42, p. 97–105, 2015.
Citations (1)

Summary

We haven't generated a summary for this paper yet.

Slide Deck Streamline Icon: https://streamlinehq.com

Whiteboard

Dice Question Streamline Icon: https://streamlinehq.com

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.