Papers
Topics
Authors
Recent
Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 148 tok/s
Gemini 2.5 Pro 48 tok/s Pro
GPT-5 Medium 34 tok/s Pro
GPT-5 High 40 tok/s Pro
GPT-4o 101 tok/s Pro
Kimi K2 183 tok/s Pro
GPT OSS 120B 443 tok/s Pro
Claude Sonnet 4.5 35 tok/s Pro
2000 character limit reached

A minimal model of inelastic tunneling of vibrating magnetic molecules on superconducting substrates (2403.10852v3)

Published 16 Mar 2024 in cond-mat.mes-hall

Abstract: We present an efficient method of calculating the vibrational spectrum of a magnetic molecule adsorbed on a superconductor, directly related to the first derivative of the tunneling $IV$ curve. The work is motivated by a recent scanning-tunneling spectroscopy of lead phthalocyanine on superconducting Pb(100), showing a wealth of vibrational excitations, the number of which highly exceeds molecular vibrations typically encountered on normal metals. We design a minimal model which represents the inelastic transitions by the spectral function of a frontier orbital of the molecule in isolation. The model allows for an exact solution; otherwise the full correlated superconducting problem would be hard to treat. The model parameters are supplied from an ab-initio calculation, where the presence of the surface on the deformation of molecular geometry can be taken into account. The spectral function of the highest-occupied molecular orbital of the anionic PbPc${1-}$ shows the best agreement with the experimental reference among other molecular charge states and orbitals. The method allows to include multiple vibrational transitions straightforwardly.

Definition Search Book Streamline Icon: https://streamlinehq.com
References (24)
  1. J.-P. Gauyacq, N. Lorente, and F. D. Novaes, Excitation of local magnetic moments by tunneling electrons, Prog. Surf. Sci. 87, 63 (2012).
  2. J. Tersoff and D. R. Hamann, Theory of the scanning tunneling microscope, Phys. Rev. B 31, 805 (1985).
  3. Y. Meir and N. S. Wingreen, Landauer formula for the current through an interacting electron region, Phys. Rev. Lett. 68, 2512 (1992).
  4. P. Coleman, Introduction to Many-Body Physics (Cambridge University Press, 2015) Chap. 9.7.2.
  5. A. V. Balatsky, I. Vekhter, and J.-X. Zhu, Impurity-induced states in conventional and unconventional superconductors, Rev. Mod. Phys. 78, 373 (2006).
  6. G. D. Mahan, Many-Particle Physics (Springer Science & Business Media, 2000).
  7. A. Nitzan, Chemical Dynamics in Condensed Phases (Oxford Graduate Texts, 2006) Chap. 12.5.3, p. 444.
  8. O. Treutler and R. Ahlrichs, Efficient molecular numerical integration schemes, J. Chem. Phys. 102, 346–354 (1995).
  9. M. Von Arnim and R. Ahlrichs, Performance of parallel TURBOMOLE for density functional calculations, J. Comp. Chem. 19, 1746 (1998).
  10. F. Weigend and R. Ahlrichs, Balanced basis sets of split valence, triple zeta valence and quadruple zeta valence quality for H to Rn: Design and assessment of accuracy, Phys. Chem. Chem. Phys. 7, 3297 (2005).
  11. F. Weigend, Accurate Coulomb-fitting basis sets for H to Rn, Phys. Chem. Chem. Phys. 8, 1057 (2006).
  12. J. P. Perdew, K. Burke, and M. Ernzerhof, Generalized Gradient Approximation Made Simple, Phys. Rev. Lett. 77, 3865 (1996).
  13. A. D. Becke, Density‐functional thermochemistry. III. The role of exact exchange, J. Chem. Phys. 98, 5648–5652 (1993).
  14. C. Lee, W. Yang, and R. G. Parr, Development of the Colle-Salvetti correlation-energy formula into a functional of the electron density, Phys. Rev. B 37, 785 (1988).
  15. A. Koliogiorgos, S. Baskoutas, and I. Galanakis, Electronic and gap properties of lead-free perfect and mixed hybrid halide perovskites: An ab-initio study, Comp. Mater. Sci. 138, 92 (2017).
  16. J. B. Homberg, Yu-Shiba-Rusinov States of Molecules on Pb(100), Ph.D. thesis, Christian-Albrechts-Universität zu Kiel, Mathematisch-Naturwissenschaftliche Fakultät (2022).
  17. P. Deglmann, F. Furche, and R. Ahlrichs, An efficient implementation of second analytical derivatives for density functional methods, Chem. Phys. Lett. 362, 511 (2002).
  18. P. Deglmann and F. Furche, Efficient characterization of stationary points on potential energy surfaces, J. Chem. Phys. 117, 9535–9538 (2002).
  19. K. Reiter, M. Kühn, and F. Weigend, Vibrational circular dichroism spectra for large molecules and molecules with heavy elements, J. Chem. Phys. 146, 054102 (2017).
  20. J. Tóbik and E. Tosatti, Jahn–Teller effect in the magnesium phthalocyanine anion, Journal of molecular structure 838, 112 (2007).
  21. R. Korytár and N. Lorente, Multi-orbital non-crossing approximation from maximally localized Wannier functions: the Kondo signature of copper phthalocyanine on Ag (100), J. Phys.: Condens. Matter 23, 355009 (2011).
  22. M. Frankerl and A. Donarini, Spin-orbit interaction induces charge beatings in a lightwave-STM – single molecule junction, Phys. Rev. B 103, 085420 (2021).
  23. R. Žitko, Spectral properties of Shiba subgap states at finite temperatures, Phys. Rev. B 93, 195125 (2016).
  24. P. Zalom, Rigorous Wilsonian renormalization group for impurity models with a spectral gap, Phys. Rev. B 108, 195123 (2023).

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

X Twitter Logo Streamline Icon: https://streamlinehq.com

Tweets

This paper has been mentioned in 1 tweet and received 2 likes.

Upgrade to Pro to view all of the tweets about this paper: