Papers
Topics
Authors
Recent
2000 character limit reached

Simulating quantum field theories on continuous-variable quantum computers (2403.10619v2)

Published 15 Mar 2024 in quant-ph, hep-ph, and hep-th

Abstract: We delve into the use of photonic quantum computing to simulate quantum mechanics and extend its application towards quantum field theory. We develop and prove a method that leverages this form of Continuous-Variable Quantum Computing (CVQC) to reproduce the time evolution of quantum-mechanical states under arbitrary Hamiltonians, and we demonstrate the method's remarkable efficacy with various potentials. Our method centres on constructing an evolver-state, a specially prepared quantum state that induces the desired time-evolution on the target state. This is achieved by introducing a non-Gaussian operation using a measurement-based quantum computing approach, enhanced by machine learning. Furthermore, we propose a framework in which these methods can be extended to encode field theories in CVQC without discretising the field values, thus preserving the continuous nature of the fields. This opens new avenues for quantum computing applications in quantum field theory.

Definition Search Book Streamline Icon: https://streamlinehq.com
References (42)
  1. S. Lloyd and S. L. Braunstein, “Quantum computation over continuous variables,” Phys. Rev. Lett. 82 (2, 1999) 1784–1787. https://link.aps.org/doi/10.1103/PhysRevLett.82.1784.
  2. S. L. Braunstein and P. van Loock, “Quantum information with continuous variables,” Rev. Mod. Phys. 77 (Jun, 2005) 513–577. https://link.aps.org/doi/10.1103/RevModPhys.77.513.
  3. T. D. Ladd, F. Jelezko, R. Laflamme, Y. Nakamura, C. Monroe, and J. L. O’Brien, “Quantum computers,” Nature 464 (2010) 45–53.
  4. G. Adesso, S. Ragy, and A. R. Lee, “Continuous variable quantum information: Gaussian states and beyond,” Open Systems & Information Dynamics 21 no. 01n02, (2014) 1440001.
  5. J. Zhang and S. L. Braunstein, “Continuous-variable gaussian analog of cluster states,” Phys. Rev. A 73 (Mar, 2006) 032318. https://link.aps.org/doi/10.1103/PhysRevA.73.032318.
  6. P. Kok, W. J. Munro, K. Nemoto, T. C. Ralph, J. P. Dowling, and G. J. Milburn, “Linear optical quantum computing with photonic qubits,” Reviews of Modern Physics 79 (2007) 135–174.
  7. S. Slussarenko and G. J. Pryde, “Photonic quantum information processing: A concise review,” Applied Physics Reviews 6 (3, 2019) 41303. https://doi.org/10.1063/1.5115814.
  8. N. Killoran, J. Izaac, N. Quesada, V. Bergholm, M. Amy, and C. Weedbrook, “Strawberry fields: A software platform for photonic quantum computing,” Quantum 3 (Mar., 2019) 129. http://dx.doi.org/10.22331/q-2019-03-11-129.
  9. T. R. Bromley, J. M. Arrazola, S. Jahangiri, J. Izaac, N. Quesada, A. D. Gran, M. Schuld, J. Swinarton, Z. Zabaneh, and N. Killoran, “Applications of near-term photonic quantum computers: software and algorithms,” Quantum Science and Technology 5 no. 3, (May, 2020) 034010. http://dx.doi.org/10.1088/2058-9565/ab8504.
  10. M. Eaton, A. Hossameldin, R. J. Birrittella, P. M. Alsing, C. C. Gerry, H. Dong, C. Cuevas, and O. Pfister, “Resolution of 100 photons and quantum generation of unbiased random numbers,” Nature Photonics 17 no. 1, (Dec., 2022) 106–111. http://dx.doi.org/10.1038/s41566-022-01105-9.
  11. C. Taballione, M. C. Anguita, M. de Goede, P. Venderbosch, B. Kassenberg, H. Snijders, N. Kannan, W. L. Vleeshouwers, D. Smith, J. P. Epping, R. van der Meer, P. W. H. Pinkse, H. van den Vlekkert, and J. J. Renema, “20-Mode Universal Quantum Photonic Processor,” Quantum 7 (Aug., 2023) 1071. https://doi.org/10.22331/q-2023-08-01-1071.
  12. K. K. Sabapathy, H. Qi, J. Izaac, and C. Weedbrook, “Production of photonic universal quantum gates enhanced by machine learning,” Phys. Rev. A 100 (Jul, 2019) 012326. https://link.aps.org/doi/10.1103/PhysRevA.100.012326.
  13. D. Su, C. R. Myers, and K. K. Sabapathy, “Conversion of gaussian states to non-gaussian states using photon-number-resolving detectors,” Phys. Rev. A 100 (Nov, 2019) 052301. https://link.aps.org/doi/10.1103/PhysRevA.100.052301.
  14. R. Raussendorf and H. J. Briegel, “A one-way quantum computer,” Phys. Rev. Lett. 86 (May, 2001) 5188–5191. https://link.aps.org/doi/10.1103/PhysRevLett.86.5188.
  15. R. I. Booth and D. Markham, “Flow conditions for continuous variable measurement-based quantum computing,” Quantum 7 (2023) 1146, [arXiv:2104.00572 [quant-ph]].
  16. S. P. Jordan, K. S. M. Lee, and J. Preskill, “Quantum Computation of Scattering in Scalar Quantum Field Theories,” Quant. Inf. Comput. 14 (2014) 1014–1080, [arXiv:1112.4833 [hep-th]].
  17. S. P. Jordan, K. S. M. Lee, and J. Preskill, “Quantum Algorithms for Quantum Field Theories,” Science 336 (2012) 1130–1133, [arXiv:1111.3633 [quant-ph]].
  18. S. P. Jordan, K. S. M. Lee, and J. Preskill, “Quantum Algorithms for Fermionic Quantum Field Theories,” [arXiv:1404.7115 [hep-th]].
  19. K. Marshall, R. Pooser, G. Siopsis, and C. Weedbrook, “Quantum simulation of quantum field theory using continuous variables,” Phys. Rev. A 92 (Dec, 2015) 063825. https://link.aps.org/doi/10.1103/PhysRevA.92.063825.
  20. S. P. Jordan, H. Krovi, K. S. M. Lee, and J. Preskill, “Bqp-completeness of scattering in scalar quantum field theory,” Quantum 2 (Jan., 2018) 44. http://dx.doi.org/10.22331/q-2018-01-08-44.
  21. N. Klco and M. J. Savage, “Digitization of scalar fields for quantum computing,” Phys. Rev. A 99 no. 5, (2019) 052335, [arXiv:1808.10378 [quant-ph]].
  22. M. C. Bañuls et al., “Simulating Lattice Gauge Theories within Quantum Technologies,” Eur. Phys. J. D 74 no. 8, (2020) 165, [arXiv:1911.00003 [quant-ph]].
  23. S. Abel and M. Spannowsky, “Observing the fate of the false vacuum with a quantum laboratory,” P. R. X. Quantum. 2 (2021) 010349, [arXiv:2006.06003 [hep-th]].
  24. S. Abel, N. Chancellor, and M. Spannowsky, “Quantum computing for quantum tunneling,” Phys. Rev. D 103 no. 1, (2021) 016008, [arXiv:2003.07374 [hep-ph]].
  25. C. W. Bauer, Z. Davoudi, A. B. Balantekin, T. Bhattacharya, M. Carena, W. A. de Jong, P. Draper, A. El-Khadra, N. Gemelke, M. Hanada, D. Kharzeev, H. Lamm, Y.-Y. Li, J. Liu, M. Lukin, Y. Meurice, C. Monroe, B. Nachman, G. Pagano, J. Preskill, E. Rinaldi, A. Roggero, D. I. Santiago, M. J. Savage, I. Siddiqi, G. Siopsis, D. Van Zanten, N. Wiebe, Y. Yamauchi, K. Yeter-Aydeniz, and S. Zorzetti, “Quantum simulation for high-energy physics,” PRX Quantum 4 (May, 2023) 027001. https://link.aps.org/doi/10.1103/PRXQuantum.4.027001.
  26. C. Kane, D. M. Grabowska, B. Nachman, and C. W. Bauer, “Efficient quantum implementation of 2+1 U(1) lattice gauge theories with Gauss law constraints,” [arXiv:2211.10497 [quant-ph]].
  27. A. Blance and M. Spannowsky, “Unsupervised event classification with graphs on classical and photonic quantum computers,” JHEP 21 (2020) 170, [arXiv:2103.03897 [hep-ph]].
  28. K. Bepari, S. Malik, M. Spannowsky, and S. Williams, “Towards a quantum computing algorithm for helicity amplitudes and parton showers,” Phys. Rev. D 103 no. 7, (2021) 076020, [arXiv:2010.00046 [hep-ph]].
  29. K. Bepari, S. Malik, M. Spannowsky, and S. Williams, “Quantum walk approach to simulating parton showers,” Phys. Rev. D 106 no. 5, (2022) 056002, [arXiv:2109.13975 [hep-ph]].
  30. G. Gustafson, S. Prestel, M. Spannowsky, and S. Williams, “Collider events on a quantum computer,” JHEP 11 (2022) 035, [arXiv:2207.10694 [hep-ph]].
  31. I. S. Maria Schuld and F. Petruccione, “An introduction to quantum machine learning,” Contemporary Physics 56 no. 2, (2015) 172–185. https://doi.org/10.1080/00107514.2014.964942.
  32. G. Carleo, I. Cirac, K. Cranmer, L. Daudet, M. Schuld, N. Tishby, L. Vogt-Maranto, and L. Zdeborová, “Machine learning and the physical sciences,” Rev. Mod. Phys. 91 no. 4, (2019) 045002, [arXiv:1903.10563 [physics.comp-ph]].
  33. S. Abel, J. C. Criado, and M. Spannowsky, “Completely quantum neural networks,” Phys. Rev. A 106 no. 2, (2022) 022601, [arXiv:2202.11727 [quant-ph]].
  34. S. Abel, J. C. Criado, and M. Spannowsky, “Training Neural Networks with Universal Adiabatic Quantum Computing,” [arXiv:2308.13028 [quant-ph]].
  35. A. Rousselot and M. Spannowsky, “Generative Invertible Quantum Neural Networks,” [arXiv:2302.12906 [hep-ph]].
  36. T. Kalajdzievski, C. Weedbrook, and P. Rebentrost, “Continuous-variable gate decomposition for the bose-hubbard model,” Phys. Rev. A 97 (Jun, 2018) 062311. https://link.aps.org/doi/10.1103/PhysRevA.97.062311.
  37. K. Yeter-Aydeniz, E. Moschandreou, and G. Siopsis, “Quantum imaginary-time evolution algorithm for quantum field theories with continuous variables,” Phys. Rev. A 105 (Jan, 2022) 012412. https://link.aps.org/doi/10.1103/PhysRevA.105.012412.
  38. J. Eisert and M. B. Plenio, “Introduction to the basics of entanglement theory in continuous-variable systems,” International Journal of Quantum Information 01 (2003) 479–506. https://doi.org/10.1142/S0219749903000371.
  39. C. S. Hamilton, R. Kruse, L. Sansoni, S. Barkhofen, C. Silberhorn, and I. Jex, “Gaussian boson sampling,” Phys. Rev. Lett. 119 (10, 2017) 170501. https://link.aps.org/doi/10.1103/PhysRevLett.119.170501.
  40. W. R. Clements, P. C. Humphreys, B. J. Metcalf, W. S. Kolthammer, and I. A. Walmsley, “Optimal design for universal multiport interferometers,” Optica 3 (12, 2016) 1460–1465. https://opg.optica.org/optica/abstract.cfm?URI=optica-3-12-1460.
  41. S. Efthymiou, S. Ramos-Calderer, C. Bravo-Prieto, A. Pérez-Salinas, D. García-Martín, A. Garcia-Saez, J. I. Latorre, and S. Carrazza, “Qibo: a framework for quantum simulation with hardware acceleration,” Quantum Science and Technology 7 no. 1, (Dec, 2021) 015018. https://doi.org/10.1088/2058-9565/ac39f5.
  42. S. Kullback and R. A. Leibler, “On information and sufficiency,” The annals of mathematical statistics 22 no. 1, (1951) 79–86.
Citations (2)

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

X Twitter Logo Streamline Icon: https://streamlinehq.com

Tweets

This paper has been mentioned in 2 tweets and received 2 likes.

Upgrade to Pro to view all of the tweets about this paper: