Papers
Topics
Authors
Recent
2000 character limit reached

A differential representation for holographic correlators (2403.10607v2)

Published 15 Mar 2024 in hep-th

Abstract: We present a differential representation for holographic four-point correlators. In this representation, the correlators are given by acting differential operators on certain seed functions. The number of these functions is much smaller than what is normally seen in known examples of holographic correlators, and all of them have simple Mellin amplitudes. This representation establishes a direct connection between correlators in position space and their Mellin space counterpart. The existence of this representation also imposes non-trivial constraints on the structure of holographic correlators. We illustrate these ideas by correlators in ${\rm AdS}_5 \times {\rm S}5$ and ${\rm AdS}_5 \times {\rm S}3$.

Definition Search Book Streamline Icon: https://streamlinehq.com
References (63)
  1. L. Rastelli and X. Zhou, “Mellin amplitudes for A⁢d⁢S5×S5𝐴𝑑subscript𝑆5superscript𝑆5AdS_{5}\times S^{5}italic_A italic_d italic_S start_POSTSUBSCRIPT 5 end_POSTSUBSCRIPT × italic_S start_POSTSUPERSCRIPT 5 end_POSTSUPERSCRIPT,” Phys. Rev. Lett. 118 no. 9, (2017) 091602, arXiv:1608.06624 [hep-th].
  2. L. Rastelli and X. Zhou, “How to Succeed at Holographic Correlators Without Really Trying,” JHEP 04 (2018) 014, arXiv:1710.05923 [hep-th].
  3. L. F. Alday and A. Bissi, “Loop Corrections to Supergravity on A⁢d⁢S5×S5𝐴𝑑subscript𝑆5superscript𝑆5AdS_{5}\times S^{5}italic_A italic_d italic_S start_POSTSUBSCRIPT 5 end_POSTSUBSCRIPT × italic_S start_POSTSUPERSCRIPT 5 end_POSTSUPERSCRIPT,” Phys. Rev. Lett. 119 no. 17, (2017) 171601, arXiv:1706.02388 [hep-th].
  4. F. Aprile, J. M. Drummond, P. Heslop, and H. Paul, “Quantum Gravity from Conformal Field Theory,” JHEP 01 (2018) 035, arXiv:1706.02822 [hep-th].
  5. L. F. Alday and S. Caron-Huot, “Gravitational S-matrix from CFT dispersion relations,” JHEP 12 (2018) 017, arXiv:1711.02031 [hep-th].
  6. L. F. Alday and X. Zhou, “Simplicity of AdS Supergravity at One Loop,” JHEP 09 (2020) 008, arXiv:1912.02663 [hep-th].
  7. F. Aprile, J. M. Drummond, P. Heslop, and H. Paul, “Loop corrections for Kaluza-Klein AdS amplitudes,” JHEP 05 (2018) 056, arXiv:1711.03903 [hep-th].
  8. F. Aprile, J. Drummond, P. Heslop, and H. Paul, “One-loop amplitudes in A⁢d⁢S5×S5𝐴𝑑subscript𝑆5superscript𝑆5AdS_{5}\times S^{5}italic_A italic_d italic_S start_POSTSUBSCRIPT 5 end_POSTSUBSCRIPT × italic_S start_POSTSUPERSCRIPT 5 end_POSTSUPERSCRIPT supergravity from 𝒩𝒩\mathcal{N}caligraphic_N = 4 SYM at strong coupling,” JHEP 03 (2020) 190, arXiv:1912.01047 [hep-th].
  9. Z. Huang and E. Y. Yuan, “Graviton scattering in AdS55{}_{5}start_FLOATSUBSCRIPT 5 end_FLOATSUBSCRIPT× S55{}^{5}start_FLOATSUPERSCRIPT 5 end_FLOATSUPERSCRIPT at two loops,” JHEP 04 (2023) 064, arXiv:2112.15174 [hep-th].
  10. J. M. Drummond and H. Paul, “Two-loop supergravity on A⁢d⁢S5×S5𝐴𝑑subscript𝑆5superscript𝑆5AdS_{5}\times S^{5}italic_A italic_d italic_S start_POSTSUBSCRIPT 5 end_POSTSUBSCRIPT × italic_S start_POSTSUPERSCRIPT 5 end_POSTSUPERSCRIPT from CFT,” JHEP 08 (2022) 275, arXiv:2204.01829 [hep-th].
  11. A. Bissi, A. Sinha, and X. Zhou, “Selected topics in analytic conformal bootstrap: A guided journey,” Phys. Rept. 991 (2022) 1–89, arXiv:2202.08475 [hep-th].
  12. P. Heslop, “The SAGEX Review on Scattering Amplitudes, Chapter 8: Half BPS correlators,” J. Phys. A 55 no. 44, (2022) 443009, arXiv:2203.13019 [hep-th].
  13. G. Mack, “D-independent representation of Conformal Field Theories in D dimensions via transformation to auxiliary Dual Resonance Models. Scalar amplitudes,” arXiv:0907.2407 [hep-th].
  14. J. Penedones, “Writing CFT correlation functions as AdS scattering amplitudes,” JHEP 03 (2011) 025, arXiv:1011.1485 [hep-th].
  15. A. L. Fitzpatrick, J. Kaplan, J. Penedones, S. Raju, and B. C. van Rees, “A Natural Language for AdS/CFT Correlators,” JHEP 11 (2011) 095, arXiv:1107.1499 [hep-th].
  16. G. Arutyunov and S. Frolov, “Four point functions of lowest weight CPOs in N=4 SYM(4) in supergravity approximation,” Phys. Rev. D62 (2000) 064016, arXiv:hep-th/0002170 [hep-th].
  17. L. F. Alday and X. Zhou, “All Holographic Four-Point Functions in All Maximally Supersymmetric CFTs,” Phys. Rev. X 11 no. 1, (2021) 011056, arXiv:2006.12505 [hep-th].
  18. L. F. Alday, C. Behan, P. Ferrero, and X. Zhou, “Gluon Scattering in AdS from CFT,” JHEP 06 (2021) 020, arXiv:2103.15830 [hep-th].
  19. Z. Huang, B. Wang, E. Y. Yuan, and X. Zhou, “Simplicity of AdS super Yang-Mills at one loop,” JHEP 01 (2024) 190, arXiv:2309.14413 [hep-th].
  20. Z. Huang, B. Wang, E. Y. Yuan, and X. Zhou, “AdS super gluon scattering up to two loops: a position space approach,” JHEP 07 (2023) 053, arXiv:2301.13240 [hep-th].
  21. G. Arutyunov, F. Dolan, H. Osborn, and E. Sokatchev, “Correlation functions and massive Kaluza-Klein modes in the AdS / CFT correspondence,” Nucl. Phys. B 665 (2003) 273–324, arXiv:hep-th/0212116.
  22. F. Aprile and P. Vieira, “Large p𝑝pitalic_p explorations. From SUGRA to big STRINGS in Mellin space,” JHEP 12 (2020) 206, arXiv:2007.09176 [hep-th].
  23. E. D’Hoker and D. Z. Freedman, “Supersymmetric gauge theories and the AdS / CFT correspondence,” in Theoretical Advanced Study Institute in Elementary Particle Physics (TASI 2001): Strings, Branes and EXTRA Dimensions, pp. 3–158. 1, 2002. arXiv:hep-th/0201253.
  24. B. Eden, A. C. Petkou, C. Schubert, and E. Sokatchev, “Partial nonrenormalization of the stress tensor four point function in N=4 SYM and AdS / CFT,” Nucl. Phys. B 607 (2001) 191–212, arXiv:hep-th/0009106.
  25. M. Nirschl and H. Osborn, “Superconformal Ward identities and their solution,” Nucl. Phys. B 711 (2005) 409–479, arXiv:hep-th/0407060.
  26. A. Fayyazuddin and M. Spalinski, “Large N superconformal gauge theories and supergravity orientifolds,” Nucl. Phys. B 535 (1998) 219–232, arXiv:hep-th/9805096.
  27. O. Aharony, A. Fayyazuddin, and J. M. Maldacena, “The Large N limit of N=2, N=1 field theories from three-branes in F theory,” JHEP 07 (1998) 013, arXiv:hep-th/9806159.
  28. A. Karch and E. Katz, “Adding flavor to AdS / CFT,” JHEP 06 (2002) 043, arXiv:hep-th/0205236.
  29. A. B. Goncharov, “Multiple polylogarithms, cyclotomy and modular complexes,” Math. Res. Lett. 5 (1998) 497–516, arXiv:1105.2076 [math.AG].
  30. A. B. Goncharov, “Multiple polylogarithms and mixed Tate motives,” arXiv:math/0103059.
  31. J. M. Drummond and H. Paul, “One-loop string corrections to AdS amplitudes from CFT,” JHEP 03 (2021) 038, arXiv:1912.07632 [hep-th].
  32. F. C. S. Brown, “Polylogarithmes multiples uniformes en une variable,” Compt. Rend. Math. 338 no. 7, (2004) 527–532.
  33. F. Chavez and C. Duhr, “Three-mass triangle integrals and single-valued polylogarithms,” JHEP 11 (2012) 114, arXiv:1209.2722 [hep-ph].
  34. F. Brown, “Single-valued Motivic Periods and Multiple Zeta Values,” SIGMA 2 (2014) e25, arXiv:1309.5309 [math.NT].
  35. F. Brown, “Notes on Motivic Periods,” arXiv:1512.06410 [math.NT].
  36. C. Duhr and F. Dulat, “PolyLogTools — polylogs for the masses,” JHEP 08 (2019) 135, arXiv:1904.07279 [hep-th].
  37. J. A. M. Vermaseren, “Harmonic sums, Mellin transforms and integrals,” Int. J. Mod. Phys. A 14 (1999) 2037–2076, arXiv:hep-ph/9806280.
  38. V. N. Velizhanin, “Analytic continuation of harmonic sums near the integer values,” Int. J. Mod. Phys. A 35 no. 33, (2020) 2050210.
  39. S. Caron-Huot and A.-K. Trinh, “All Tree-Level Correlators in AdS×5{}_{5}\timesstart_FLOATSUBSCRIPT 5 end_FLOATSUBSCRIPT ×S55{}_{5}start_FLOATSUBSCRIPT 5 end_FLOATSUBSCRIPT Supergravity: Hidden Ten-Dimensional Conformal Symmetry,” JHEP 01 (2019) 196, arXiv:1809.09173 [hep-th].
  40. L. F. Alday, A. Bissi, and X. Zhou, “One-loop gluon amplitudes in AdS,” JHEP 02 (2022) 105, arXiv:2110.09861 [hep-th].
  41. J. Penedones, J. A. Silva, and A. Zhiboedov, “Nonperturbative Mellin Amplitudes: Existence, Properties, Applications,” JHEP 08 (2020) 031, arXiv:1912.11100 [hep-th].
  42. P. J. Heslop, A. E. Lipstein, and M. Santagata, “Hidden Conformal Symmetry in AdS×2{}_{2}\timesstart_FLOATSUBSCRIPT 2 end_FLOATSUBSCRIPT ×S22{}^{2}start_FLOATSUPERSCRIPT 2 end_FLOATSUPERSCRIPT Beyond Tree Level,” arXiv:2312.15678 [hep-th].
  43. T. Heckelbacher, I. Sachs, E. Skvortsov, and P. Vanhove, “Analytical evaluation of AdS44{}_{4}start_FLOATSUBSCRIPT 4 end_FLOATSUBSCRIPT Witten diagrams as flat space multi-loop Feynman integrals,” JHEP 08 (2022) 052, arXiv:2201.09626 [hep-th].
  44. L. F. Alday, “On genus-one string amplitudes on A⁢d⁢S5×S5𝐴𝑑subscript𝑆5superscript𝑆5AdS_{5}\times S^{5}italic_A italic_d italic_S start_POSTSUBSCRIPT 5 end_POSTSUBSCRIPT × italic_S start_POSTSUPERSCRIPT 5 end_POSTSUPERSCRIPT,” JHEP 04 (2021) 005, arXiv:1812.11783 [hep-th].
  45. H. Paul and M. Santagata, “Genus-one open string amplitudes on AdS55{}_{5}start_FLOATSUBSCRIPT 5 end_FLOATSUBSCRIPT×S33{}^{3}start_FLOATSUPERSCRIPT 3 end_FLOATSUPERSCRIPT from CFT,” JHEP 12 (2023) 057, arXiv:2309.15506 [hep-th].
  46. A. Bissi, G. Fardelli, and A. Georgoudis, “All loop structures in supergravity amplitudes on AdS5 × S5 from CFT,” J. Phys. A 54 no. 32, (2021) 324002, arXiv:2010.12557 [hep-th].
  47. J. M. Drummond, “Generalised ladders and single-valued polylogarithms,” JHEP 02 (2013) 092, arXiv:1207.3824 [hep-th].
  48. A. Bissi, G. Fardelli, and A. Georgoudis, “Towards all loop supergravity amplitudes on AdS5×S5,” Phys. Rev. D 104 no. 4, (2021) L041901, arXiv:2002.04604 [hep-th].
  49. L. F. Alday, V. Gonçalves, and X. Zhou, “Supersymmetric Five-Point Gluon Amplitudes in AdS Space,” Phys. Rev. Lett. 128 no. 16, (2022) 161601, arXiv:2201.04422 [hep-th].
  50. V. Gonçalves, C. Meneghelli, R. Pereira, J. Vilas Boas, and X. Zhou, “Kaluza-Klein five-point functions from AdS55{}_{5}start_FLOATSUBSCRIPT 5 end_FLOATSUBSCRIPT×S55{}^{5}start_FLOATSUPERSCRIPT 5 end_FLOATSUPERSCRIPT supergravity,” JHEP 08 (2023) 067, arXiv:2302.01896 [hep-th].
  51. L. F. Alday and X. Zhou, “All Tree-Level Correlators for M-theory on A⁢d⁢S7×S4𝐴𝑑subscript𝑆7superscript𝑆4AdS_{7}\times S^{4}italic_A italic_d italic_S start_POSTSUBSCRIPT 7 end_POSTSUBSCRIPT × italic_S start_POSTSUPERSCRIPT 4 end_POSTSUPERSCRIPT,” Phys. Rev. Lett. 125 no. 13, (2020) 131604, arXiv:2006.06653 [hep-th].
  52. L. F. Alday, S. M. Chester, and H. Raj, “6d (2,0) and M-theory at 1-loop,” JHEP 01 (2021) 133, arXiv:2005.07175 [hep-th].
  53. L. F. Alday, S. M. Chester, and H. Raj, “M-theory on AdS44{}_{4}start_FLOATSUBSCRIPT 4 end_FLOATSUBSCRIPT× S77{}^{7}start_FLOATSUPERSCRIPT 7 end_FLOATSUPERSCRIPT at 1-loop and beyond,” JHEP 11 (2022) 091, arXiv:2207.11138 [hep-th].
  54. L. F. Alday, V. Gonçalves, M. Nocchi, and X. Zhou, “Six-point AdS gluon amplitudes from flat space and factorization,” Phys. Rev. Res. 6 no. 1, (2024) L012041, arXiv:2307.06884 [hep-th].
  55. Q. Cao, S. He, and Y. Tang, “On constructibility of AdS supergluon amplitudes,” arXiv:2312.15484 [hep-th].
  56. Z. Huang, B. Wang, and E. Y. Yuan, “to appear,”.
  57. T. Abl, P. Heslop, and A. E. Lipstein, “Higher-dimensional symmetry of AdS22{}_{2}start_FLOATSUBSCRIPT 2 end_FLOATSUBSCRIPT×S22{}^{2}start_FLOATSUPERSCRIPT 2 end_FLOATSUPERSCRIPT correlators,” JHEP 03 (2022) 076, arXiv:2112.09597 [hep-th].
  58. K. C. Rigatos and S. Zhou, “Bootstrapping AdS×2{}_{2}\timesstart_FLOATSUBSCRIPT 2 end_FLOATSUBSCRIPT × S22{}^{2}start_FLOATSUPERSCRIPT 2 end_FLOATSUPERSCRIPT hypermultiplets: hidden four-dimensional conformal symmetry,” arXiv:2403.03285 [hep-th].
  59. L. Rastelli, K. Roumpedakis, and X. Zhou, “𝐀𝐝𝐒𝟑×𝐒𝟑subscript𝐀𝐝𝐒3superscript𝐒3\mathbf{AdS_{3}\times S^{3}}bold_AdS start_POSTSUBSCRIPT bold_3 end_POSTSUBSCRIPT × bold_S start_POSTSUPERSCRIPT bold_3 end_POSTSUPERSCRIPT Tree-Level Correlators: Hidden Six-Dimensional Conformal Symmetry,” JHEP 10 (2019) 140, arXiv:1905.11983 [hep-th].
  60. L. F. Alday, S. M. Chester, and H. Raj, “ABJM at strong coupling from M-theory, localization, and Lorentzian inversion,” JHEP 02 (2022) 005, arXiv:2107.10274 [hep-th].
  61. V. Gonçalves, R. Pereira, and X. Zhou, “20′superscript20′20^{\prime}20 start_POSTSUPERSCRIPT ′ end_POSTSUPERSCRIPT Five-Point Function from A⁢d⁢S5×S5𝐴𝑑subscript𝑆5superscript𝑆5AdS_{5}\times S^{5}italic_A italic_d italic_S start_POSTSUBSCRIPT 5 end_POSTSUBSCRIPT × italic_S start_POSTSUPERSCRIPT 5 end_POSTSUPERSCRIPT Supergravity,” JHEP 10 (2019) 247, arXiv:1906.05305 [hep-th].
  62. Y.-Z. Li and J. Mei, “Bootstrapping Witten diagrams via differential representation in Mellin space,” JHEP 07 (2023) 156, arXiv:2304.12757 [hep-th].
  63. F. Bhat and P. Maity, “Perturbative Mellin amplitudes of 𝒩=4𝒩4\mathcal{N}=4caligraphic_N = 4 SYM,” arXiv:2312.17692 [hep-th].
Citations (1)

Summary

We haven't generated a summary for this paper yet.

Whiteboard

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Continue Learning

We haven't generated follow-up questions for this paper yet.

Collections

Sign up for free to add this paper to one or more collections.

Tweets

Sign up for free to view the 2 tweets with 0 likes about this paper.