Papers
Topics
Authors
Recent
Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 134 tok/s
Gemini 2.5 Pro 41 tok/s Pro
GPT-5 Medium 26 tok/s Pro
GPT-5 High 27 tok/s Pro
GPT-4o 100 tok/s Pro
Kimi K2 204 tok/s Pro
GPT OSS 120B 433 tok/s Pro
Claude Sonnet 4.5 37 tok/s Pro
2000 character limit reached

Non-reciprocal dynamics and the non-Hermitian skin effect of repulsively bound pairs (2403.10449v4)

Published 15 Mar 2024 in quant-ph, cond-mat.mes-hall, and cond-mat.quant-gas

Abstract: We study the dynamics of a Bose-Hubbard model coupled to an engineered environment which in the non-interacting limit is described by the celebrated Hatano-Nelson model. At strong interactions, two bosons occupying the same site form a so-called repulsively bound pair, or doublon. Using tensor-network simulations, we clearly identify a distinct doublon lightcone and show that the doublon inherits non-reciprocity from that of single particles. Applying the idea of reservoir engineering at the level of doublons, we introduce a new set of dissipators and we analytically show that then the doublon dynamics are governed by the Hatano-Nelson model. This brings about an interaction-induced non-Hermitian skin effect and non-reciprocal doublon motion. Combining features of the two models we study, we show that single particles and doublons can be made to spread with opposite directionality, opening intriguing possibilities for the study of dynamics in interacting non-reciprocal models.

Definition Search Book Streamline Icon: https://streamlinehq.com
References (48)
  1. Z. G. Yuto Ashida and M. Ueda, Non-Hermitian physics, Advances in Physics 69, 249 (2020).
  2. E. J. Bergholtz, J. C. Budich, and F. K. Kunst, Exceptional topology of non-Hermitian systems, Rev. Mod. Phys. 93, 015005 (2021).
  3. N. Hatano and D. R. Nelson, Localization transitions in non-Hermitian quantum mechanics, Phys. Rev. Lett. 77, 570 (1996).
  4. T. E. Lee, Anomalous edge state in a non-Hermitian lattice, Phys. Rev. Lett. 116, 133903 (2016).
  5. S. Yao and Z. Wang, Edge states and topological invariants of non-Hermitian systems, Phys. Rev. Lett. 121, 086803 (2018).
  6. M.-H. L. Xiujuan Zhang, Tian Zhang and Y.-F. Chen, A review on non-Hermitian skin effect, Advances in Physics: X 7, 2109431 (2022).
  7. J. F. Poyatos, J. I. Cirac, and P. Zoller, Quantum reservoir engineering with laser cooled trapped ions, Phys. Rev. Lett. 77, 4728 (1996).
  8. A. Metelmann and A. A. Clerk, Nonreciprocal photon transmission and amplification via reservoir engineering, Phys. Rev. X 5, 021025 (2015).
  9. A. Metelmann and H. E. Türeci, Nonreciprocal signal routing in an active quantum network, Phys. Rev. A 97, 043833 (2018).
  10. F. Song, S. Yao, and Z. Wang, Non-Hermitian skin effect and chiral damping in open quantum systems, Phys. Rev. Lett. 123, 170401 (2019a).
  11. D. Porras and S. Fernández-Lorenzo, Topological amplification in photonic lattices, Phys. Rev. Lett. 122, 143901 (2019).
  12. C. C. Wanjura, M. Brunelli, and A. Nunnenkamp, Topological framework for directional amplification in driven-dissipative cavity arrays, Nature Communications 11, 3149 (2020).
  13. C. C. Wanjura, M. Brunelli, and A. Nunnenkamp, Correspondence between non-Hermitian topology and directional amplification in the presence of disorder, Phys. Rev. Lett. 127, 213601 (2021a).
  14. A. McDonald, R. Hanai, and A. A. Clerk, Nonequilibrium stationary states of quantum non-Hermitian lattice models, Phys. Rev. B 105, 064302 (2022).
  15. G. Lee, A. McDonald, and A. Clerk, Anomalously large relaxation times in dissipative lattice models beyond the non-Hermitian skin effect, Phys. Rev. B 108, 064311 (2023).
  16. M. Brunelli, C. C. Wanjura, and A. Nunnenkamp, Restoration of the non-Hermitian bulk-boundary correspondence via topological amplification, SciPost Phys. 15, 173 (2023).
  17. M. Nakagawa, N. Kawakami, and M. Ueda, Non-Hermitian Kondo effect in ultracold alkaline-earth atoms, Phys. Rev. Lett. 121, 203001 (2018).
  18. R. Hamazaki, K. Kawabata, and M. Ueda, Non-Hermitian many-body localization, Phys. Rev. Lett. 123, 090603 (2019).
  19. K. Kawabata, K. Shiozaki, and S. Ryu, Many-body topology of non-Hermitian systems, Phys. Rev. B 105, 165137 (2022).
  20. Z. Wang, L.-J. Lang, and L. He, Emergent Mott insulators and non-Hermitian conservation laws in an interacting bosonic chain with noninteger filling and nonreciprocal hopping, Phys. Rev. B 105, 054315 (2022).
  21. L. Mao, Y. Hao, and L. Pan, Non-Hermitian skin effect in a one-dimensional interacting Bose gas, Phys. Rev. A 107, 043315 (2023).
  22. B. H. Kim, J.-H. Han, and M. J. Park, Collective non-Hermitian skin effect: Point-gap topology and the doublon-holon excitations in non-reciprocal many-body systems (2023), arXiv:2309.07894 [cond-mat.str-el] .
  23. S. Longhi, Spectral structure and doublon dissociation in the two-particle non-Hermitian Hubbard model, Annalen der Physik 535, 2300291 (2023).
  24. K. Kawabata, T. Numasawa, and S. Ryu, Entanglement phase transition induced by the non-Hermitian skin effect, Phys. Rev. X 13, 021007 (2023).
  25. C.-Z. Lu and G. Sun, Many-body entanglement and spectral clusters in the extended hard-core bosonic Hatano-Nelson model (2023), arXiv:2310.07599 [cond-mat.str-el] .
  26. G. Sun and S.-P. Kou, Aufbau principle for non-Hermitian systems (2023), arXiv:2307.04696 [quant-ph] .
  27. S. Hamanaka and K. Kawabata, Multifractality of many-body non-Hermitian skin effect (2024), arXiv:2401.08304 [cond-mat.str-el] .
  28. M. Ezawa, Dynamical nonlinear higher-order non-Hermitian skin effects and topological trap-skin phase, Phys. Rev. B 105, 125421 (2022).
  29. F. Song, S. Yao, and Z. Wang, Non-Hermitian skin effect and chiral damping in open quantum systems, Phys. Rev. Lett. 123, 170401 (2019b).
  30. F. Yang, Q.-D. Jiang, and E. J. Bergholtz, Liouvillian skin effect in an exactly solvable model, Phys. Rev. Res. 4, 023160 (2022).
  31. C. Ekman and E. J. Bergholtz, Liouvillian skin effects and fragmented condensates in an integrable dissipative Bose-Hubbard model (2024), arXiv:2402.10261 [cond-mat.quant-gas] .
  32. F. Verstraete, J. J. García-Ripoll, and J. I. Cirac, Matrix product density operators: Simulation of finite-temperature and dissipative systems, Phys. Rev. Lett. 93, 207204 (2004).
  33. T. Prosen and M. Žnidarič, Matrix product simulations of non-equilibrium steady states of quantum spin chains, Journal of Statistical Mechanics: Theory and Experiment 2009, P02035 (2009).
  34. D. Jaschke, S. Montangero, and L. D. Carr, One-dimensional many-body entangled open quantum systems with tensor network methods, Quantum Science and Technology 4, 013001 (2018).
  35. S. E. Begg and R. Hanai, Universality in open quantum spin chains with non-reciprocity (2023), arXiv:2307.03714 [cond-mat.stat-mech] .
  36. C. C. Wanjura, M. Brunelli, and A. Nunnenkamp, Correspondence between non-Hermitian topology and directional amplification in the presence of disorder, Phys. Rev. Lett. 127, 213601 (2021b).
  37. G. Vidal, Efficient classical simulation of slightly entangled quantum computations, Phys. Rev. Lett. 91, 147902 (2003).
  38. See supplementary material.
  39. L.-M. Duan, E. Demler, and M. D. Lukin, Controlling spin exchange interactions of ultracold atoms in optical lattices, Phys. Rev. Lett. 91, 090402 (2003).
  40. A. B. Kuklov and B. V. Svistunov, Counterflow superfluidity of two-species ultracold atoms in a commensurate optical lattice, Phys. Rev. Lett. 90, 100401 (2003).
  41. J. R. Schrieffer and P. A. Wolff, Relation between the Anderson and Kondo Hamiltonians, Phys. Rev. 149, 491 (1966).
  42. S. Bravyi, D. P. DiVincenzo, and D. Loss, Schrieffer–Wolff transformation for quantum many-body systems, Annals of Physics 326, 2793 (2011).
  43. M. Rigol, V. Dunjko, and M. Olshanii, Thermalization and its mechanism for generic isolated quantum systems, Nature 452, 854 (2008).
  44. L. F. Santos, F. Borgonovi, and F. M. Izrailev, Chaos and statistical relaxation in quantum systems of interacting particles, Phys. Rev. Lett. 108, 094102 (2012).
  45. M. Fishman, S. R. White, and E. M. Stoudenmire, The ITensor software library for tensor network calculations, SciPost Phys. Codebases , 4 (2022).
  46. H. Weimer, A. Kshetrimayum, and R. Orús, Simulation methods for open quantum many-body systems, Rev. Mod. Phys. 93, 015008 (2021).
  47. N. Hatano and M. Suzuki, Finding exponential product formulas of higher orders, in Quantum Annealing and Other Optimization Methods, edited by A. Das and B. K. Chakrabarti (Springer Berlin Heidelberg, Berlin, Heidelberg, 2005) pp. 37–68.
  48. C. W. Gardiner and P. Zoller, Quantum Noise (Springer, Berlin, 2004).
Citations (3)

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

X Twitter Logo Streamline Icon: https://streamlinehq.com

Tweets

This paper has been mentioned in 2 tweets and received 0 likes.

Upgrade to Pro to view all of the tweets about this paper: