Free Doubly-Infinitary Distributive Categories are Cartesian Closed (2403.10447v6)
Abstract: We investigate categories in which products distribute over coproducts, a structure we call doubly-infinitary distributive categories. Through a range of examples, we explore how this notion relates to established concepts such as extensivity, infinitary distributivity, and cartesian closedness. We show that doubly-infinitary distributivity strictly strengthens the classical notion of infinitary distributivity. Moreover, we prove that free doubly-infinitary distributive categories are cartesian closed, unlike free distributive categories. The paper concludes with observations on non-canonical isomorphisms, alongside open questions and directions for future research.
- Categories of containers. In Foundations of Software Science and Computation Structures: 6th International Conference, FOSSACS 2003 Held as Part of the Joint European Conferences on Theory and Practice of Software, ETAPS 2003 Warsaw, Poland, April 7–11, 2003 Proceedings 6, pages 23–38. Springer, 2003.
- S. Abramsky and G. McCusker. Call-by-value games. In Computer science logic. 11th international workshop, CSL ’97. Annual conference of the EACSL, Aarhus, Denmark, August 23–29, 1997. Proceedings, pages 1–17. Berlin: Springer, 1998.
- J. Adámek and J. Rosický. How nice are free completions of categories? Topology Appl., 273:24, 2020. Id/No 106972.
- Dependent types and fibred computational effects. In International Conference on Foundations of Software Science and Computation Structures, pages 36–54. Springer, 2016.
- Higher-order containers. In Conference on Computability in Europe, pages 11–20. Springer, 2010.
- Two-dimensional monad theory. J. Pure Appl. Algebra, 59(1):1–41, 1989.
- F. Borceux. Handbook of Categorical Algebra: Volume 2, Categories and Structures, volume 2. Cambridge University Press, 1994.
- F. Borceux and G. Janelidze. Galois theories, volume 72 of Camb. Stud. Adv. Math. Cambridge: Cambridge University Press, paperback reprint of the hardback edition 2001 edition, 2008.
- M. Caccamo and G. Winksel. Limit preservation from naturality. In Proceedings of the 10th conference on category theory in computer science (CTCS 2004), Copenhagen, Denmark, August 12–14, 2004, pages 3–22. Amsterdam: Elsevier, 2005.
- Introduction to extensive and distributive categories. Journal of Pure and Applied Algebra, 84(2):145–158, 1993.
- M. M. Clementino. (T,𝐕)𝑇𝐕(T,\mathbf{V})( italic_T , bold_V )-𝐂𝐚𝐭𝐂𝐚𝐭\mathbf{Cat}bold_Cat is extensive. Theory Appl. Categ., 36:368–378, 2021.
- Lax comma 2222-categories and admissible 2222-functors. arXiv e-prints, page arXiv:2002.03132, February 2020.
- M. M. Clementino and W. Tholen. Metric, topology and multicategory – a common approach. J. Pure Appl. Algebra, 179(1-2):13–47, 2003.
- A unified framework for generalized multicategories. Theory Appl. Categ., 24:580–655, 2010.
- J. Diller. Eine variante zur dialectica-interpretation der heyting-arithmetik endlicher typen. Archiv für mathematische Logik und Grundlagenforschung, 16(1-2):49–66, 1974.
- B. Fawcett and R. J. Wood. Constructive complete distributivity. I. Math. Proc. Camb. Philos. Soc., 107(1):81–89, 1990.
- V. K. Gödel. Über eine bisher noch nicht benützte erweiterung des finiten standpunktes. dialectica, 12(3-4):280–287, 1958.
- J. W. Gray. Fibred and cofibred categories. In Proc. Conf. Categorical Algebra (La Jolla, Calif., 1965), pages 21–83. Springer, New York, 1966.
- A. Grothendieck and M. Raynaud. Revêtements étales et groupe fondamental: Séminaire de géométrie algébrique du bois-marie 1960–1961 (sga 1). Lecture Notes in Mathematics, 224:1–447, 1971.
- A convenient category for higher-order probability theory. In 2017 32nd Annual ACM/IEEE Symposium on Logic in Computer Science (LICS), pages 1–12. IEEE, 2017.
- J. M. E. Hyland. Proof theory in the abstract. Ann. Pure Appl. Log., 114(1-3):43–78, 2002.
- P. T. Johnstone. Sketches of an elephant: A topos theory compendium, volume 2. Oxford University Press, 2002.
- G. M. Kelly and S. Lack. On property-like structures. Theory Appl. Categ, 3(9):213–250, 1997.
- A. Kock. Monads for which structures are adjoint to units. Journal of Pure and Applied Algebra, 104(1):41–59, 1995.
- S. Lack. Non-canonical isomorphisms. J. Pure Appl. Algebra, 216(3):593–597, 2012.
- F. Lucatelli Nunes. On biadjoint triangles. Theory Appl. Categ., 31:Paper No. 9, 217–256, 2016.
- F. Lucatelli Nunes. Freely generated n𝑛nitalic_n-categories, coinserters and presentations of low dimensional categories. arXiv e-prints, page arXiv:1704.04474, April 2017.
- F. Lucatelli Nunes. On lifting of biadjoints and lax algebras. Categ. Gen. Algebr. Struct. Appl., 9(1):29–58, 2018.
- F. Lucatelli Nunes. Pseudo-Kan extensions and descent theory. Theory Appl. Categ., 33:390–444, 2018.
- F. Lucatelli Nunes. Pseudoalgebras and non-canonical isomorphisms. Appl. Categ. Struct., 27(1):55–63, 2019.
- F. Lucatelli Nunes and M. Vákár. CHAD for expressive total languages. Mathematical Structures in Computer Science, 33(4-5):311–426, 2023.
- Covering morphisms in categories of relational algebras. Appl. Categ. Struct., 22(5-6):767–788, 2014.
- F. Marmolejo. Doctrines whose structure forms a fully faithful adjoint string. Theory Appl. Categ., 3:24–44, 1997.
- F. Marmolejo. Distributive laws for pseudomonads. II. J. Pure Appl. Algebra, 194(1-2):169–182, 2004.
- F. Marmolejo and R. J. Wood. Coherence for pseudodistributive laws revisited. Theory Appl. Categ., 20:74–84, 2008.
- F. Marmolejo. Distributive laws for pseudomonads. Theory and Applications of Categories, 5(5):91–147, 1999.
- Completely and totally distributive categories i. Journal of Pure and Applied Algebra, 216(8-9):1775–1790, 2012.
- J. Picado and A. Pultr. Frames and locales. Topology without points. Front. Math. Berlin: Springer, 2012.
- R. Prezado. On effective descent 𝒱𝒱\mathcal{V}caligraphic_V-functors and familial descent morphisms. J. Pure Appl. Algebra, 228(5):21, 2024. Id/No 107597.
- R. Prezado and F. Lucatelli Nunes. Generalized multicategories: change-of-base, embedding, and descent. arXiv e-prints, page arXiv:2309.08084, September 2023.
- R. Street. Fibrations in bicategories. Cah. Topologie Géom. Différ. Catégoriques, 21:111–159, 1980.
- R. Street. Correction to ”Fibrations in bicategories”. Cah. Topologie Géom. Différ. Catégoriques, 28(1):53–56, 1987.
- M. Vákár. A categorical semantics for linear logical frameworks. In International Conference on Foundations of Software Science and Computation Structures, pages 102–116. Springer, 2015.
- M. Vákár. In search of effectful dependent types. arXiv preprint arXiv:1706.07997, 2017. DPhil Thesis, University of Oxford.
- T. Von Glehn. Polynomials, fibrations and distributive laws. Theory and Applications of Categories, 33(36):1111–1144, 2018.
- C. Walker. Distributive laws via admissibility. Applied Categorical Structures, 27(6):567–617, 2019.
Sponsor
Paper Prompts
Sign up for free to create and run prompts on this paper using GPT-5.
Top Community Prompts
Collections
Sign up for free to add this paper to one or more collections.