Papers
Topics
Authors
Recent
2000 character limit reached

H-MaP: An Iterative and Hybrid Sequential Manipulation Planner (2403.10436v2)

Published 15 Mar 2024 in cs.RO

Abstract: This paper introduces H-MaP, a hybrid sequential manipulation planner that addresses complex tasks requiring both sequential actions and dynamic contact mode switches. Our approach reduces configuration space dimensionality by decoupling object trajectory planning from manipulation planning through object-based waypoint generation, informed contact sampling, and optimization-based motion planning. This architecture enables handling of challenging scenarios involving tool use, auxiliary object manipulation, and bimanual coordination. Experimental results across seven diverse tasks demonstrate H-MaP's superior performance compared to existing methods, particularly in highly constrained environments where traditional approaches fail due to local minima or scalability issues. The planner's effectiveness is validated through both simulation and real-robot experiments.

Definition Search Book Streamline Icon: https://streamlinehq.com
References (30)
  1. M. A. Toussaint, K. R. Allen, K. A. Smith, and J. B. Tenenbaum, “Differentiable physics and stable modes for tool-use and manipulation planning,” Proceedings of the Robotics: Science and Systems Foundation, 2018.
  2. T. Pang, H. T. Suh, L. Yang, and R. Tedrake, “Global planning for contact-rich manipulation via local smoothing of quasi-dynamic contact models,” IEEE Transactions on Robotics, vol. 39, no. 6, pp. 4691–4711, 2023.
  3. X. Cheng, E. Huang, Y. Hou, and M. T. Mason, “Contact mode guided motion planning for quasidynamic dexterous manipulation in 3d,” in IEEE International Conference on Robotics and Automation (ICRA), pp. 2730–2736, 2022.
  4. G. Lee, T. Lozano-Perez, and L. P. Kaelbling, “Hierarchical planning for multi-contact non-prehensile manipulation,” IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS), pp. 264–271, 2015.
  5. D. E. McCoy, M. Schiestl, P. Neilands, R. Hassall, R. D. Gray, and A. H. Taylor, “New caledonian crows behave optimistically after using tools,” Current Biology, vol. 29, no. 16, pp. 2737–2742, 2019.
  6. Wikipedia contributors, “Latch.” https://en.wikipedia.org/wiki/Latch, 2024. Last visited on 2024-02-18.
  7. D. M. Wolpert and J. R. Flanagan, “Motor prediction,” Current biology, vol. 11, no. 18, pp. R729–R732, 2001.
  8. M. Kawato, “Internal models for motor control and trajectory planning,” Current opinion in neurobiology, vol. 9, no. 6, pp. 718–727, 1999.
  9. F. Osiurak and A. Badets, “Tool use and affordance: Manipulation-based versus reasoning-based approaches.,” Psychological review, vol. 123, no. 5, p. 534, 2016.
  10. U. Kleinholdermann, V. H. Franz, and K. R. Gegenfurtner, “Human grasp point selection,” Journal of vision, vol. 13, no. 8, pp. 23–23, 2013.
  11. M. Toussaint, “Newton methods for k-order markov constrained motion problems,” arXiv preprint arXiv:1407.0414, 2014.
  12. M. Toussaint, “A tutorial on newton methods for constrained trajectory optimization and relations to slam, gaussian process smoothing, optimal control, and probabilistic inference,” Geometric and numerical foundations of movements, pp. 361–392, 2017.
  13. M. Zucker, N. Ratliff, A. D. Dragan, M. Pivtoraiko, M. Klingensmith, C. M. Dellin, J. A. Bagnell, and S. S. Srinivasa, “Chomp: Covariant hamiltonian optimization for motion planning,” The International journal of robotics research, vol. 32, no. 9-10, pp. 1164–1193, 2013.
  14. A. D. Dragan, N. D. Ratliff, and S. S. Srinivasa, “Manipulation planning with goal sets using constrained trajectory optimization,” in IEEE International Conference on Robotics and Automation (ICRA), pp. 4582–4588, 2011.
  15. A. D. Dragan, G. J. Gordon, and S. S. Srinivasa, “Learning from experience in manipulation planning: Setting the right goals,” in Robotics Research: The 15th International Symposium ISRR, pp. 309–326, Springer, 2017.
  16. M. Kalakrishnan, S. Chitta, E. Theodorou, P. Pastor, and S. Schaal, “Stomp: Stochastic trajectory optimization for motion planning,” in IEEE International Conference on Robotics and Automation (ICRA), pp. 4569–4574, 2011.
  17. J. Schulman, Y. Duan, J. Ho, A. Lee, I. Awwal, H. Bradlow, J. Pan, S. Patil, K. Goldberg, and P. Abbeel, “Motion planning with sequential convex optimization and convex collision checking,” The International Journal of Robotics Research, vol. 33, no. 9, pp. 1251–1270, 2014.
  18. M. Toussaint, “Logic-geometric programming: An optimization-based approach to combined task and motion planning.,” in IJCAI, pp. 1930–1936, 2015.
  19. D. Berenson, S. S. Srinivasa, D. Ferguson, and J. J. Kuffner, “Manipulation planning on constraint manifolds,” in IEEE International Conference on Robotics and Automation (ICRA), pp. 625–632, 2009.
  20. Z. Kingston, M. Moll, and L. E. Kavraki, “Exploring implicit spaces for constrained sampling-based planning,” The International Journal of Robotics Research, vol. 38, no. 10-11, pp. 1151–1178, 2019.
  21. P. S. Schmitt, W. Neubauer, W. Feiten, K. M. Wurm, G. V. Wichert, and W. Burgard, “Optimal, sampling-based manipulation planning,” in IEEE International Conference on Robotics and Automation (ICRA), pp. 3426–3432, 2017.
  22. Y. C. Nakamura, D. M. Troniak, A. Rodriguez, M. T. Mason, and N. S. Pollard, “The complexities of grasping in the wild,” in IEEE-RAS 17th International Conference on Humanoid Robotics (Humanoids), pp. 233–240, 2017.
  23. S. M. LaValle, “Rapidly-exploring random trees: A new tool for path planning,” tech. rep., Computer Science Department, Iowa State University, Ames, IA, USA, 1998.
  24. C. R. Garrett, R. Chitnis, R. Holladay, B. Kim, T. Silver, L. P. Kaelbling, and T. Lozano-Pérez, “Integrated task and motion planning,” Annual review of control, robotics, and autonomous systems, vol. 4, pp. 265–293, 2021.
  25. S. Cambon, R. Alami, and F. Gravot, “A hybrid approach to intricate motion, manipulation and task planning,” The International Journal of Robotics Research, vol. 28, no. 1, pp. 104–126, 2009.
  26. O. Kroemer and J. Peters, “A flexible hybrid framework for modeling complex manipulation tasks,” in IEEE International Conference on Robotics and Automation (ICRA), pp. 1856–1861, 2011.
  27. R. Alur, T. A. Henzinger, G. Lafferriere, and G. J. Pappas, “Discrete abstractions of hybrid systems,” Proceedings of the IEEE, vol. 88, no. 7, pp. 971–984, 2000.
  28. J. Z. Woodruff and K. M. Lynch, “Planning and control for dynamic, nonprehensile, and hybrid manipulation tasks,” in IEEE International Conference on Robotics and Automation (ICRA), pp. 4066–4073, 2017.
  29. M. Toussaint, J.-S. Ha, and D. Driess, “Describing physics for physical reasoning: Force-based sequential manipulation planning,” IEEE Robotics and Automation Letters, vol. 5, no. 4, pp. 6209–6216, 2020.
  30. M. Toussaint, “Robotic systems toolbox.” GitHub repository, 2024. Available: https://github.com/MarcToussaint/robotic.

Summary

We haven't generated a summary for this paper yet.

Whiteboard

Paper to Video (Beta)

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Continue Learning

We haven't generated follow-up questions for this paper yet.

Collections

Sign up for free to add this paper to one or more collections.