Papers
Topics
Authors
Recent
Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 77 tok/s
Gemini 2.5 Pro 54 tok/s Pro
GPT-5 Medium 29 tok/s Pro
GPT-5 High 26 tok/s Pro
GPT-4o 103 tok/s Pro
Kimi K2 175 tok/s Pro
GPT OSS 120B 454 tok/s Pro
Claude Sonnet 4.5 38 tok/s Pro
2000 character limit reached

Gating single-molecule fluorescence with electrons (2403.10410v1)

Published 15 Mar 2024 in cond-mat.mes-hall

Abstract: Tip-enhanced photoluminescence (TEPL) measurements are performed with sub-nanometer spatial resolution on individual molecules decoupled from a metallic substrate by a thin NaCl layer. TEPL spectra reveal progressive fluorescence quenching with decreasing tip-molecule distance when electrons tunneling from the tip of a scanning tunneling microscope are injected at resonance with the molecular states. Rate equations based on a many-body model reveal that the luminescence quenching is due to a progressive population inversion between the ground neutral (S$_0$) and the ground charge ($D_0-$) states of the molecule occurring when the current is raised. We demonstrate that both the bias voltage and the atomic-scale lateral position of the tip can be used to gate the molecular emission. Our approach can in principle be applied to any molecular system, providing unprecedented control over the fluorescence of a single molecule.

Definition Search Book Streamline Icon: https://streamlinehq.com
References (44)
  1. Fölling, J. et al. Fluorescence nanoscopy by ground-state depletion and single-molecule return. Nat. Methods 5, 943–945 (2008).
  2. Super-Resolution Imaging with Small Organic Fluorophores. Angew. Chem. Int. Ed. 48, 6903–6908 (2009).
  3. Controlling the fluorescence of ordinary oxazine dyes for single-molecule switching and superresolution microscopy. Proc. Natl. Acad. Sci. 106, 8107–8112 (2009).
  4. Fluorescence Behavior of Single-Molecule pH-Sensors. Single Mol. 1, 17–23 (2000).
  5. Toninelli, C. et al. Single organic molecules for photonic quantum technologies. Nat. Mater. 20, 1615–1628 (2021).
  6. Electrical charge control of h-BN single photon sources. 2D Mater. 9, 035020 (2022).
  7. Electrochromic Graphene Molecules. ACS Nano 9, 4043–4049 (2015).
  8. On/off blinking and switching behaviour of single molecules of green fluorescent protein. Nature 388, 355–358 (1997).
  9. Emerging electrochromic materials and devices for future displays. Chem. Rev. 122, 14679–14721 (2022).
  10. Molecules on Insulating Films: Scanning-Tunneling Microscopy Imaging of Individual Molecular Orbitals. Phys. Rev. Lett. 94, 026803 (2005).
  11. Tunneling rates in electron transport through double-barrier molecular junctions in a scanning tunneling microscope. Proc. Natl. Acad. Sci. 102, 8832–8837 (2005).
  12. Charge State Control of Molecules Reveals Modification of the Tunneling Barrier with Intramolecular Contrast. Nano Lett. 11, 1580–1584 (2011).
  13. Gating the Charge State of Single Molecules by Local Electric Fields. Phys. Rev. Lett. 108, 036801 (2012).
  14. Switching and charging of a ruthenium dye on Ag(111). Phys. Chem. Chem. Phys. 15, 10326–10330 (2013).
  15. Cochrane, K. A. et al. Molecularly resolved electronic landscapes of differing acceptor-donor interface geometries. J. Phys. Chem. C 122, 8437–8444 (2018).
  16. Charge-state lifetimes of single molecules on few monolayers of NaCl. Nat. Commun. 14, 4988 (2023).
  17. Benz, F. et al. Single-molecule optomechanics in “picocavities”. Science 354, 726–729 (2016).
  18. Rosławska, A. et al. Mapping Lamb, Stark, and Purcell Effects at a Chromophore-Picocavity Junction with Hyper-Resolved Fluorescence Microscopy. Phys. Rev. X 12, 011012 (2022).
  19. Vibrationally Resolved Fluorescence Excited with Submolecular Precision. Science 299, 542–546 (2003).
  20. Imada, H. et al. Real-space investigation of energy transfer in heterogeneous molecular dimers. Nature 538, 364–367 (2016).
  21. Zhang, Y. et al. Visualizing coherent intermolecular dipole–dipole coupling in real space. Nature 531, 623–627 (2016).
  22. Doppagne, B. et al. Vibronic Spectroscopy with Submolecular Resolution from STM-Induced Electroluminescence. Phys. Rev. Lett. 118, 127401 (2017).
  23. Luo, Y. et al. Electrically Driven Single-Photon Superradiance from Molecular Chains in a Plasmonic Nanocavity. Phys. Rev. Lett. 122, 233901 (2019).
  24. Cao, S. et al. Energy funnelling within multichromophore architectures monitored with subnanometre resolution. Nat. Chem. 13, 766–770 (2021).
  25. Doppagne, B. et al. Electrofluorochromism at the single-molecule level. Science 361, 251–255 (2018).
  26. Rai, V. et al. Boosting Light Emission from Single Hydrogen Phthalocyanine Molecules by Charging. Nano Lett. 20, 7600–7605 (2020).
  27. Exciton-Trion Conversion Dynamics in a Single Molecule. ACS Nano 15, 7694–7699 (2021).
  28. Doležal, J. et al. Real Space Visualization of Entangled Excitonic States in Charged Molecular Assemblies. ACS Nano (2021).
  29. Doležal, J. et al. Evidence of exciton-libron coupling in chirally adsorbed single molecules. Nat. Commun. 13, 6008 (2022).
  30. Jiang, S. et al. Many-Body Description of STM-Induced Fluorescence of Charged Molecules. Phys. Rev. Lett. 130, 126202 (2023).
  31. Hung, T.-C. et al. Bipolar single-molecule electroluminescence and electrofluorochromism. Phys. Rev. Res. 5, 033027 (2023).
  32. Rai, V. et al. Activating Electroluminescence of Charged Naphthalene Diimide Complexes Directly Adsorbed on a Metal Substrate. Phys. Rev. Lett. 130, 036201 (2023).
  33. Kaiser, K. et al. Electrically driven cascaded photon-emission in a single molecule. arXiv:2402.17536 (2024).
  34. Yang, B. et al. Sub-nanometre resolution in single-molecule photoluminescence imaging. Nat. Photonics 14, 693–699 (2020).
  35. Imada, H. et al. Single-molecule laser nanospectroscopy with micro–electron volt energy resolution. Science 373, 95–98 (2021).
  36. Imai-Imada, M. et al. Orbital-resolved visualization of single-molecule photocurrent channels. Nature 603, 829–834 (2022).
  37. Rosławska, A. et al. Submolecular-scale control of phototautomerization. Nat. Nanotechnol. (2024).
  38. Single-Molecule Time-Resolved Spectroscopy in a Tunable STM Nanocavity. Nano Lett. 24, 1629–1634 (2024).
  39. Murray, C. et al. Visible luminescence spectroscopy of free-base and zinc phthalocyanines isolated in cryogenic matrices. Phys. Chem. Chem. Phys. 13, 17543–17554 (2011).
  40. Character of Electronic States in the Transport Gap of Molecules on Surfaces. ACS Nano 17, 13176–13184 (2023).
  41. Local thickness determination of thin insulator films via localized states. Appl. Phys. Lett. 104, 231606 (2014).
  42. Doležal, J. et al. Charge Carrier Injection Electroluminescence with CO-Functionalized Tips on Single Molecular Emitters. Nano Lett. 19, 8605–8611 (2019).
  43. Rosławska, A. et al. Single Charge and Exciton Dynamics Probed by Molecular-Scale-Induced Electroluminescence. Nano Lett. 18, 4001–4007 (2018).
  44. Coupling of Molecular Emitters and Plasmonic Cavities beyond the Point-Dipole Approximation. Nano Lett. 18, 2358–2364 (2018).

Summary

We haven't generated a summary for this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

X Twitter Logo Streamline Icon: https://streamlinehq.com

Tweets

This paper has been mentioned in 1 post and received 1 like.