Papers
Topics
Authors
Recent
Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 134 tok/s
Gemini 2.5 Pro 41 tok/s Pro
GPT-5 Medium 22 tok/s Pro
GPT-5 High 29 tok/s Pro
GPT-4o 53 tok/s Pro
Kimi K2 193 tok/s Pro
GPT OSS 120B 433 tok/s Pro
Claude Sonnet 4.5 37 tok/s Pro
2000 character limit reached

Search for the decay of the Higgs boson to a pair of light pseudoscalar bosons in the final state with four bottom quarks in proton-proton collisions at $\sqrt{s}$ = 13 TeV (2403.10341v2)

Published 15 Mar 2024 in hep-ex

Abstract: A search is presented for the decay of the 125 GeV Higgs boson (H) to a pair of new light pseudoscalar bosons (a), followed by the prompt decay of each a boson to a bottom quark-antiquark pair, H $\to$ aa $\to$ $\mathrm{b\bar{b}b\bar{b}}$. The analysis is performed using a data sample of proton-proton collisions collected with the CMS detector at a center-of-mass energy of 13 TeV, corresponding to an integrated luminosity of 138 fb${-1}$. To reduce the background from standard model processes, the search requires the Higgs boson to be produced in association with a leptonically decaying W or Z boson. The analysis probes the production of new light bosons in a 15 $\lt$ $m_\mathrm{a}$ $\lt$ 60 GeV mass range. Assuming the standard model predictions for the Higgs boson production cross sections for pp $\to$ WH and ZH, model independent upper limits at 95% confidence level are derived for the branching fraction $\mathcal{B}$(H $\to$ aa $\to$ $\mathrm{b\bar{b}b\bar{b}}$). The combined WH and ZH observed upper limit on the branching fraction ranges from 1.10 for $m_\mathrm{a} =$ 20 GeV to 0.36 for $m_\mathrm{a} =$ 60 GeV, complementing other measurements in the $\mu\mu\tau\tau$, $\tau\tau\tau\tau$ and bb$\ell\ell$ ($\ell = $ $\mu$, $\tau$) channels.

Definition Search Book Streamline Icon: https://streamlinehq.com
References (78)
  1. ATLAS Collaboration, “Observation of a new particle in the search for the standard model Higgs boson with the ATLAS detector at the LHC”, Phys. Lett. B 716 (2012) 1, 10.1016/j.physletb.2012.08.020, arXiv:1207.7214.
  2. CMS Collaboration, “Observation of a new boson at a mass of 125 GeV with the CMS experiment at the LHC”, Phys. Lett. B 716 (2012) 30, 10.1016/j.physletb.2012.08.021, arXiv:1207.7235.
  3. CMS Collaboration, “Observation of a new boson with mass near 125 GeV in pp collisions at s𝑠\sqrt{s}square-root start_ARG italic_s end_ARG = 7 and 8 TeV”, JHEP 06 (2013) 081, 10.1007/JHEP06(2013)081, arXiv:1303.4571.
  4. ATLAS Collaboration, “A detailed map of Higgs boson interactions by the ATLAS experiment ten years after the discovery”, Nature 607 (2022) 52, 10.1038/s41586-022-04893-w, arXiv:2207.00092. [Erratum: \DOIhttps://doi.org/10.1038/s41586-022-05581-5].
  5. CMS Collaboration, “A portrait of the Higgs boson by the CMS experiment ten years after the discovery.”, Nature 607 (2022) 60, 10.1038/s41586-022-04892-x, arXiv:2207.00043.
  6. G. C. Branco et al., “Theory and phenomenology of two-Higgs-doublet models”, Phys. Rept. 516 (2012) 1, 10.1016/j.physrep.2012.02.002, arXiv:1106.0034.
  7. D. Curtin et al., “Exotic decays of the 125 GeV Higgs boson”, Phys. Rev. D 90 (2014) 075004, 10.1103/PhysRevD.90.075004, arXiv:1312.4992.
  8. U. Ellwanger, C. Hugonie, and A. M. Teixeira, “The next-to-minimal supersymmetric standard model”, Phys. Rept. 496 (2010) 1, 10.1016/j.physrep.2010.07.001, arXiv:0910.1785.
  9. ATLAS Collaboration, “Search for the Higgs boson produced in association with a W𝑊Witalic_W boson and decaying to four b𝑏bitalic_b-quarks via two spin-zero particles in p⁢p𝑝𝑝ppitalic_p italic_p collisions at 13 TeV with the ATLAS detector”, Eur. Phys. J. C 76 (2016) 605, 10.1140/epjc/s10052-016-4418-9, arXiv:1606.08391.
  10. ATLAS Collaboration, “Search for the Higgs boson produced in association with a vector boson and decaying into two spin-zero particles in the H→a⁢a→4⁢b→𝐻𝑎𝑎→4𝑏H\rightarrow aa\rightarrow 4bitalic_H → italic_a italic_a → 4 italic_b channel in p⁢p𝑝𝑝ppitalic_p italic_p collisions at s=13𝑠13\sqrt{s}=13square-root start_ARG italic_s end_ARG = 13 TeV with the ATLAS detector”, JHEP 10 (2018) 031, 10.1007/JHEP10(2018)031, arXiv:1806.07355.
  11. ATLAS Collaboration, “Search for Higgs boson decays into two new low-mass spin-0 particles in the 4b𝑏bitalic_b channel with the ATLAS detector using p⁢p𝑝𝑝ppitalic_p italic_p collisions at s=13𝑠13\sqrt{s}=13square-root start_ARG italic_s end_ARG = 13 TeV”, Phys. Rev. D 102 (2020) 112006, 10.1103/PhysRevD.102.112006, arXiv:2005.12236.
  12. ATLAS Collaboration, “Search for new light gauge bosons in Higgs boson decays to four-lepton final states in p⁢p𝑝𝑝ppitalic_p italic_p collisions at s=8𝑠8\sqrt{s}=8square-root start_ARG italic_s end_ARG = 8 TeV with the ATLAS detector at the LHC”, Phys. Rev. D 92 (2015) 092001, 10.1103/PhysRevD.92.092001, arXiv:1505.07645.
  13. CMS Collaboration, “Search for a non-standard-model Higgs boson decaying to a pair of new light bosons in four-muon final states”, Phys. Lett. B 726 (2013) 564, 10.1016/j.physletb.2013.09.009, arXiv:1210.7619.
  14. CMS Collaboration, “A search for pair production of new light bosons decaying into muons”, Phys. Lett. B 752 (2016) 146, 10.1016/j.physletb.2015.10.067, arXiv:1506.00424.
  15. CMS Collaboration, “Search for light bosons in decays of the 125 GeV Higgs boson in proton-proton collisions at s=8𝑠8\sqrt{s}=8square-root start_ARG italic_s end_ARG = 8 TeV”, JHEP 10 (2017) 076, 10.1007/JHEP10(2017)076, arXiv:1701.02032.
  16. CMS Collaboration, “Search for a very light NMSSM Higgs boson produced in decays of the 125 GeV scalar boson and decaying into τ𝜏\tauitalic_τ leptons in pp collisions at s=8𝑠8\sqrt{s}=8square-root start_ARG italic_s end_ARG = 8 TeV”, JHEP 01 (2016) 079, 10.1007/JHEP01(2016)079, arXiv:1510.06534.
  17. ATLAS Collaboration, “Search for new phenomena in events with at least three photons collected in p⁢p𝑝𝑝ppitalic_p italic_p collisions at s𝑠\sqrt{s}square-root start_ARG italic_s end_ARG = 8 TeV with the ATLAS detector”, Eur. Phys. J. C 76 (2016) 210, 10.1140/epjc/s10052-016-4034-8, arXiv:1509.05051.
  18. ATLAS Collaboration, “Search for Higgs boson decays to beyond-the-standard-model light bosons in four-lepton events with the ATLAS detector at s=13𝑠13\sqrt{s}=13square-root start_ARG italic_s end_ARG = 13 TeV”, JHEP 06 (2018) 166, 10.1007/JHEP06(2018)166, arXiv:1802.03388.
  19. CMS Collaboration, “A search for pair production of new light bosons decaying into muons in proton-proton collisions at 13 TeV”, Phys. Lett. B 796 (2019) 131, 10.1016/j.physletb.2019.07.013, arXiv:1812.00380.
  20. ATLAS Collaboration, “Search for Higgs bosons decaying to aa in the μ⁢μ⁢τ⁢τ𝜇𝜇𝜏𝜏\mu\mu\tau\tauitalic_μ italic_μ italic_τ italic_τ final state in pp collisions at s=8𝑠8\sqrt{s}=8square-root start_ARG italic_s end_ARG = 8 TeV with the ATLAS experiment”, Phys. Rev. D 92 (2015) 052002, 10.1103/PhysRevD.92.052002, arXiv:1505.01609.
  21. CMS Collaboration, “Search for an exotic decay of the Higgs boson to a pair of light pseudoscalars in the final state of two muons and two τ𝜏\tauitalic_τ leptons in proton-proton collisions at s=13𝑠13\sqrt{s}=13square-root start_ARG italic_s end_ARG = 13 TeV”, JHEP 11 (2018) 018, 10.1007/JHEP11(2018)018, arXiv:1805.04865.
  22. CMS Collaboration, “Search for a light pseudoscalar Higgs boson in the boosted μ⁢μ⁢τ⁢τ𝜇𝜇𝜏𝜏\mu\mu\tau\tauitalic_μ italic_μ italic_τ italic_τ final state in proton-proton collisions at s=𝑠absent\sqrt{s}=square-root start_ARG italic_s end_ARG = 13 TeV”, JHEP 08 (2020) 139, 10.1007/JHEP08(2020)139, arXiv:2005.08694.
  23. ATLAS Collaboration, “Search for Higgs boson decays into a pair of light bosons in the b⁢b⁢μ⁢μ𝑏𝑏𝜇𝜇bb\mu\muitalic_b italic_b italic_μ italic_μ final state in p⁢p𝑝𝑝ppitalic_p italic_p collision at s=13𝑠13\sqrt{s}=13square-root start_ARG italic_s end_ARG = 13 TeV with the ATLAS detector”, Phys. Lett. B 790 (2019) 1, 10.1016/j.physletb.2018.10.073, arXiv:1807.00539.
  24. CMS Collaboration, “Search for exotic decays of the Higgs boson to a pair of pseudoscalars in the μ⁢μ𝜇𝜇\mu\muitalic_μ italic_μbb and τ⁢τ𝜏𝜏\tau\tauitalic_τ italic_τbb final states”, 2024. arXiv:2402.13358. Submitted to Eur. Phys. J. C.
  25. CMS Collaboration, “Search for an exotic decay of the Higgs boson to a pair of light pseudoscalars in the final state with two b quarks and two τ𝜏\tauitalic_τ leptons in proton-proton collisions at s=13𝑠13\sqrt{s}=13square-root start_ARG italic_s end_ARG = 13 TeV”, Phys. Lett. B 785 (2018) 462, 10.1016/j.physletb.2018.08.057, arXiv:1805.10191.
  26. ATLAS Collaboration, “Search for Higgs boson decays into pairs of light (pseudo)scalar particles in the γ⁢γ⁢j⁢j𝛾𝛾𝑗𝑗\gamma\gamma jjitalic_γ italic_γ italic_j italic_j final state in pp collisions at s=13𝑠13\sqrt{s}=13square-root start_ARG italic_s end_ARG = 13 TeV with the ATLAS detector”, Phys. Lett. B 782 (2018) 750, 10.1016/j.physletb.2018.06.011, arXiv:1803.11145.
  27. M. Cepeda, S. Gori, V. M. Outschoorn, and J. Shelton, “Exotic Higgs decays”, Ann. Rev. Nucl. Part. Sci. 72 (2022) 119, 10.1146/annurev-nucl-102319-024147, arXiv:2111.12751.
  28. HEPData record for this analysis, 2024. 10.17182/hepdata.147309.
  29. CMS Collaboration, “The CMS experiment at the CERN LHC”, JINST 3 (2008) S08004, 10.1088/1748-0221/3/08/S08004.
  30. CMS Collaboration, “The CMS trigger system”, JINST 12 (2017) P01020, 10.1088/1748-0221/12/01/P01020, arXiv:1609.02366.
  31. CMS Collaboration, “Performance of the CMS level-1 trigger in proton-proton collisions at s=13⁢\TeV𝑠13\TeV\sqrt{s}=13\TeVsquare-root start_ARG italic_s end_ARG = 13”, JINST 15 (2020) P10017, 10.1088/1748-0221/15/10/P10017, arXiv:2006.10165.
  32. P. Nason, “A new method for combining NLO QCD with shower Monte Carlo algorithms”, JHEP 11 (2004) 040, 10.1088/1126-6708/2004/11/040, arXiv:hep-ph/0409146.
  33. S. Frixione, P. Nason, and C. Oleari, “Matching NLO QCD computations with parton shower simulations: the POWHEG method”, JHEP 11 (2007) 070, 10.1088/1126-6708/2007/11/070, arXiv:0709.2092.
  34. S. Alioli, P. Nason, C. Oleari, and E. Re, “A general framework for implementing NLO calculations in shower Monte Carlo programs: the POWHEG BOX”, JHEP 06 (2010) 043, 10.1007/JHEP06(2010)043, arXiv:1002.2581.
  35. CMS Collaboration, “Measurement of differential cross sections for top quark pair production using the lepton+jets final state in proton-proton collisions at 13 TeV”, Phys. Rev. D 95 (2017) 092001, 10.1103/PhysRevD.95.092001, arXiv:1610.04191.
  36. J. Alwall et al., “The automated computation of tree-level and next-to-leading order differential cross sections, and their matching to parton shower simulations”, JHEP 07 (2014) 079, 10.1007/JHEP07(2014)079, arXiv:1405.0301.
  37. CMS Collaboration, “Observation of Higgs boson decay to bottom quarks”, Phys. Rev. Lett. 121 (2018) 121801, 10.1103/PhysRevLett.121.121801, arXiv:1808.08242.
  38. J. Alwall et al., “Comparative study of various algorithms for the merging of parton showers and matrix elements in hadronic collisions”, Eur. Phys. J. C 53 (2008) 473, 10.1140/epjc/s10052-007-0490-5, arXiv:0706.2569.
  39. R. Frederix and S. Frixione, “Merging meets matching in MC@NLO”, JHEP 12 (2012) 061, 10.1007/JHEP12(2012)061, arXiv:1209.6215.
  40. LHC Higgs Cross Section Working Group, “Handbook of LHC Higgs cross sections: 1. Inclusive observables”, CERN Report CERN-2011-002, 2011. 10.5170/CERN-2011-002, arXiv:1101.0593.
  41. LHC Higgs Cross Section Working Group, “Handbook of LHC Higgs cross sections: 2. Differential distributions”, CERN Report CERN-2012-002, 2012. 10.5170/CERN-2012-002, arXiv:1201.3084.
  42. LHC Higgs Cross Section Working Group, “Handbook of LHC Higgs cross sections: 3. Higgs properties”, CERN Report CERN-2013-004, 2013. 10.5170/CERN-2013-004, arXiv:1307.1347.
  43. LHC Higgs Cross Section Working Group, “Handbook of LHC Higgs cross sections: 4. deciphering the nature of the Higgs sector”, CERN Report CERN-2017-002-M, 2016. 10.23731/CYRM-2017-002, arXiv:1610.07922.
  44. NNPDF Collaboration, “Parton distributions from high-precision collider data”, Eur. Phys. J. C 77 (2017) 663, 10.1140/epjc/s10052-017-5199-5, arXiv:1706.00428.
  45. P. Skands, S. Carrazza, and J. Rojo, “Tuning PYTHIA 8.1: the Monash 2013 Tune”, Eur. Phys. J. C 74 (2014) 3024, 10.1140/epjc/s10052-014-3024-y, arXiv:1404.5630.
  46. CMS Collaboration, “Event generator tunes obtained from underlying event and multiparton scattering measurements”, Eur. Phys. J. C 76 (2016) 155, 10.1140/epjc/s10052-016-3988-x, arXiv:1512.00815.
  47. CMS Collaboration, “Extraction and validation of a new set of CMS PYTHIA8 tunes from underlying-event measurements”, Eur. Phys. J. C 80 (2020) 4, 10.1140/epjc/s10052-019-7499-4, arXiv:1903.12179.
  48. GEANT4 Collaboration, “\GEANTfour—a simulation toolkit”, Nucl. Instrum. Meth. A 506 (2003) 250, 10.1016/S0168-9002(03)01368-8.
  49. CMS Collaboration, “Particle-flow reconstruction and global event description with the CMS detector”, JINST 12 (2017) P10003, 10.1088/1748-0221/12/10/P10003, arXiv:1706.04965.
  50. CMS Collaboration, “Performance of electron reconstruction and selection with the CMS detector in proton-proton collisions at s=8𝑠8\sqrt{s}=8square-root start_ARG italic_s end_ARG = 8\TeV”, JINST 10 (2015) P06005, 10.1088/1748-0221/10/06/P06005, arXiv:1502.02701.
  51. CMS Collaboration, “Performance of the CMS muon detector and muon reconstruction with proton-proton collisions at s=13𝑠13\sqrt{s}=13square-root start_ARG italic_s end_ARG = 13 TeV”, JINST 13 (2018) P06015, 10.1088/1748-0221/13/06/P06015, arXiv:1804.04528.
  52. CMS Collaboration, “Technical proposal for the Phase-II upgrade of the Compact Muon Solenoid”, CMS Technical Proposal CERN-LHCC-2015-010, CMS-TDR-15-02, 2015.
  53. M. Cacciari and G. P. Salam, “Pileup subtraction using jet areas”, Phys. Lett. B 659 (2008) 119, 10.1016/j.physletb.2007.09.077, arXiv:0707.1378.
  54. CMS Collaboration, “Measurement of the inclusive W and Z production cross sections in pp collisions at s=7⁢\TeV𝑠7\TeV\sqrt{s}=7{\TeV}square-root start_ARG italic_s end_ARG = 7”, JHEP 10 (2011) 132, 10.1007/JHEP10(2011)132, arXiv:1107.4789.
  55. M. Cacciari, G. P. Salam, and G. Soyez, “The anti-\ktjet clustering algorithm”, JHEP 04 (2008) 063, 10.1088/1126-6708/2008/04/063, arXiv:0802.1189.
  56. M. Cacciari, G. P. Salam, and G. Soyez, “FastJet user manual”, Eur. Phys. J. C 72 (2012) 1896, 10.1140/epjc/s10052-012-1896-2, arXiv:1111.6097.
  57. CMS Collaboration, “Jet energy scale and resolution in the CMS experiment in pp collisions at 8 TeV”, JINST 12 (2017) P02014, 10.1088/1748-0221/12/02/P02014, arXiv:1607.03663.
  58. CMS Collaboration, “Identification of heavy-flavour jets with the CMS detector in pp collisions at 13 TeV”, JINST 13 (2018) P05011, 10.1088/1748-0221/13/05/P05011, arXiv:1712.07158.
  59. CMS Collaboration, “Performance of missing transverse momentum reconstruction in proton-proton collisions at s=13⁢\TeV𝑠13\TeV\sqrt{s}=13\TeVsquare-root start_ARG italic_s end_ARG = 13 using the CMS detector”, JINST 14 (2019) P07004, 10.1088/1748-0221/14/07/P07004, arXiv:1903.06078.
  60. UA1 Collaboration, “Experimental observation of isolated large transverse energy electrons with associated missing energy at s=540𝑠540\sqrt{s}=540square-root start_ARG italic_s end_ARG = 540 GeV”, Phys. Lett. B 122 (1983) 103, 10.1016/0370-2693(83)91177-2.
  61. H. Voss, A. Höcker, J. Stelzer, and F. Tegenfeldt, “TMVA, the toolkit for multivariate data analysis with ROOT”, in XIth International Workshop on Advanced Computing and Analysis Techniques in Physics Research (ACAT), p. 40. 2007. arXiv:physics/0703039. [PoS(ACAT)040]. 10.22323/1.050.0040.
  62. ATLAS Collaboration, “Measurement of the b⁢b¯𝑏¯𝑏b\overline{b}italic_b over¯ start_ARG italic_b end_ARG dijet cross section in pp collisions at s=7⁢\TeV𝑠7\TeV\sqrt{s}=7\TeVsquare-root start_ARG italic_s end_ARG = 7 with the ATLAS detector”, Eur. Phys. J. C 76 (2016) 670, 10.1140/epjc/s10052-016-4521-y, arXiv:1607.08430.
  63. ATLAS Collaboration, “Measurement of differential production cross-sections for a Z𝑍Zitalic_Z boson in association with b𝑏bitalic_b-jets in 7 TeV proton-proton collisions with the ATLAS detector”, JHEP 10 (2014) 141, 10.1007/JHEP10(2014)141, arXiv:1407.3643.
  64. CMS Collaboration, “Measurement of the associated production of a Z boson with charm or bottom quark jets in proton-proton collisions at s=13⁢\TeV𝑠13\TeV\sqrt{s}=13\TeVsquare-root start_ARG italic_s end_ARG = 13”, Phys. Rev. D 102 (2020) 032007, 10.1103/PhysRevD.102.032007, arXiv:2001.06899.
  65. CMS Collaboration, “Precision luminosity measurement in proton-proton collisions at s=13⁢\TeV𝑠13\TeV\sqrt{s}=13\TeVsquare-root start_ARG italic_s end_ARG = 13 in 2015 and 2016 at CMS”, Eur. Phys. J. C 81 (2021) 800, 10.1140/epjc/s10052-021-09538-2, arXiv:2104.01927.
  66. CMS Collaboration, “CMS luminosity measurement for the 2017 data-taking period at s=13𝑠13\sqrt{s}=13square-root start_ARG italic_s end_ARG = 13 TeV”, CMS Physics Analysis Summary CMS-PAS-LUM-17-004, 2018.
  67. CMS Collaboration, “CMS luminosity measurement for the 2018 data-taking period at s=13𝑠13\sqrt{s}=13square-root start_ARG italic_s end_ARG = 13 TeV”, CMS Physics Analysis Summary CMS-PAS-LUM-18-002, 2019.
  68. J. Butterworth et al., “PDF4LHC recommendations for LHC Run II”, J. Phys. G 43 (2016) 023001, 10.1088/0954-3899/43/2/023001, arXiv:1510.03865.
  69. M. Czakon, P. Fiedler, and A. Mitov, “Total top-quark pair-production cross section at hadron colliders through O⁢(αS4)𝑂subscriptsuperscript𝛼4𝑆O(\alpha^{4}_{S})italic_O ( italic_α start_POSTSUPERSCRIPT 4 end_POSTSUPERSCRIPT start_POSTSUBSCRIPT italic_S end_POSTSUBSCRIPT )”, Phys. Rev. Lett. 110 (2013) 252004, 10.1103/PhysRevLett.110.252004, arXiv:1303.6254.
  70. N. Kidonakis, “Two-loop soft anomalous dimensions for single top quark associated production with a W−superscript𝑊W^{-}italic_W start_POSTSUPERSCRIPT - end_POSTSUPERSCRIPT or H−superscript𝐻H^{-}italic_H start_POSTSUPERSCRIPT - end_POSTSUPERSCRIPT”, Phys. Rev. D 82 (2010) 054018, 10.1103/PhysRevD.82.054018, arXiv:1005.4451.
  71. N. Kidonakis, “Top quark production”, in Helmholtz International Summer School on Physics of Heavy Quarks and Hadrons, p. 139. 2014. arXiv:1311.0283. 10.3204/DESY-PROC-2013-03/Kidonakis.
  72. T. Gehrmann et al., “W+⁢W−superscript𝑊superscript𝑊W^{+}W^{-}italic_W start_POSTSUPERSCRIPT + end_POSTSUPERSCRIPT italic_W start_POSTSUPERSCRIPT - end_POSTSUPERSCRIPT production at hadron colliders in next to next to leading order QCD”, Phys. Rev. Lett. 113 (2014) 212001, 10.1103/PhysRevLett.113.212001, arXiv:1408.5243.
  73. F. Cascioli et al., “ZZ production at hadron colliders in NNLO QCD”, Phys. Lett. B 735 (2014) 311, 10.1016/j.physletb.2014.06.056, arXiv:1405.2219.
  74. CMS Collaboration, “Measurement of the differential Drell-Yan cross section in proton-proton collisions at ss\sqrt{\mathrm{s}}square-root start_ARG roman_s end_ARG = 13 TeV”, JHEP 12 (2019) 059, 10.1007/JHEP12(2019)059, arXiv:1812.10529.
  75. CMS Collaboration, “Measurement of the inelastic proton-proton cross section at s=13𝑠13\sqrt{s}=13square-root start_ARG italic_s end_ARG = 13 TeV”, JHEP 07 (2018) 161, 10.1007/JHEP07(2018)161, arXiv:1802.02613.
  76. R. J. Barlow and C. Beeston, “Fitting using finite Monte Carlo samples”, Comput. Phys. Commun. 77 (1993) 219, 10.1016/0010-4655(93)90005-W.
  77. A. L. Read, “Presentation of search results: The \CLstechnique”, J. Phys. G 28 (2002) 2693, 10.1088/0954-3899/28/10/313.
  78. G. Cowan, K. Cranmer, E. Gross, and O. Vitells, “Asymptotic formulae for likelihood-based tests of new physics”, Eur. Phys. J. C 71 (2011) 1554, 10.1140/epjc/s10052-011-1554-0, arXiv:1007.1727. [Erratum: \DOI10.1140/epjc/s10052-013-2501-z].
Citations (1)

Summary

We haven't generated a summary for this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

Authors (1)

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

X Twitter Logo Streamline Icon: https://streamlinehq.com

Tweets

This paper has been mentioned in 5 tweets and received 38 likes.

Upgrade to Pro to view all of the tweets about this paper: