Papers
Topics
Authors
Recent
2000 character limit reached

A de Finetti theorem for quantum causal structures

Published 15 Mar 2024 in quant-ph | (2403.10316v3)

Abstract: What does it mean for a causal structure to be unknown'? Can we even talk aboutrepetitions' of an experiment without prior knowledge of causal relations? And under what conditions can we say that a set of processes with arbitrary, possibly indefinite, causal structure are independent and identically distributed? Similar questions for classical probabilities, quantum states, and quantum channels are beautifully answered by so-called "de Finetti theorems", which connect a simple and easy-to-justify condition -- symmetry under exchange -- with a very particular multipartite structure: a mixture of identical states/channels. Here we extend the result to processes with arbitrary causal structure, including indefinite causal order and multi-time, non-Markovian processes applicable to noisy quantum devices. The result also implies a new class of de Finetti theorems for quantum states subject to a large class of linear constraints, which can be of independent interest.

Definition Search Book Streamline Icon: https://streamlinehq.com
References (101)
  1. “Fair coins tend to land on the same side they started: Evidence from 350,757 flips” (2023). arXiv:2310.04153.
  2. Bruno De Finetti. “Funzione caratteristica di un fenomeno aleatorio”. In Atti del Congresso Internazionale dei Matematici: Bologna del 3 al 10 de settembre di 1928. Pages 179–190.  (1929). url: http://www.brunodefinetti.it/Opere/funzioneCaratteristica.pdf.
  3. Bruno de Finetti. “La prévision : ses lois logiques, ses sources subjectives”. Annales de l’institut Henri Poincaré 7, 1–68 (1937). url: http://eudml.org/doc/79004.
  4. “Symmetric measures on cartesian products”. Trans. Am. Math. Soc. 80, 470–501 (1955).
  5. J. F. C. Kingman. “Uses of exchangeability”. Ann. Probab. 6, 183–197 (1978).
  6. David J. Aldous. “Exchangeability and related topics”. In P. L. Hennequin, editor, École d’Été de Probabilités de Saint-Flour XIII — 1983. Pages 1–198. Springer Berlin Heidelberg (1985).
  7. Raymond J. O’Brien. “Bayesian Inference and Decision Techniques: Essays in Honor of Bruno de Finetti. Studies in Bayesian Econometrics and Statistics, Vol. 6”. The Economic Journal 98, 883–884 (1988).
  8. Erling Størmer. “Symmetric states of infinite tensor products of C∗∗{}^{\ast}start_FLOATSUPERSCRIPT ∗ end_FLOATSUPERSCRIPT-algebras”. J. Funct. Anal. 3, 48–68 (1969).
  9. “Locally normal symmetric states and an analogue of de Finetti’s theorem”. Z. Wahrscheinlichkeitstheorie verw Gebiete 33, 343–351 (1976).
  10. “De Finetti representation theorem for quantum-process tomography”. Phys. Rev. A 69, 062305 (2004).
  11. “Unknown quantum states: The quantum de Finetti representation”. J. Math. Phys. 43, 4537–4559 (2002).
  12. “Quantum bayes rule”. Phys. Rev. A 64, 014305 (2001).
  13. “QInfer: Statistical inference software for quantum applications”. Quantum 1, 5 (2017).
  14. “Equilibrium states for mean field models”. J. Math. Phys. 21, 355–358 (1980).
  15. “A fermionic de Finetti theorem”. J. Math. Phys. 58, 122204 (2017).
  16. Renato Renner. “Symmetry of large physical systems implies independence of subsystems”. Nature Physics 3, 645–649 (2007).
  17. “Postselection technique for quantum channels with applications to quantum cryptography”. Phys. Rev. Lett. 102, 020504 (2009).
  18. R. Renner and J. I. Cirac. “de Finetti representation theorem for infinite-dimensional quantum systems and applications to quantum cryptography”. Phys. Rev. Lett. 102, 110504 (2009).
  19. Fernando G. S. L. Brandão and Martin B. Plenio. “A generalization of quantum stein’s lemma”. Commun. Math. Phys. 295, 791–828 (2010).
  20. “Power of symmetric extensions for entanglement detection”. Phys. Rev. A 80, 052306 (2009).
  21. “Faithful squashed entanglement”. Commun. Math. Phys. 306, 805 (2011).
  22. “A quasipolynomial-time algorithm for the quantum separability problem”. In Proceedings of the Forty-Third Annual ACM Symposium on Theory of Computing. Page 343–352. STOC ’11New York, NY, USA (2011). Association for Computing Machinery.
  23. Fernando G. S. L. Brandão and Aram W. Harrow. “Quantum de Finetti Theorems Under Local Measurements with Applications”. Commun. Math. Phys. 353, 469–506 (2017).
  24. R. L. Hudson. “Analogs of de Finetti’s theorem and interpretative problems of quantum mechanics”. Found Phys 11, 805–808 (1981).
  25. “The de Finetti theorem for test spaces”. New J. Phys. 11, 033024 (2009).
  26. “Finite de Finetti theorem for conditional probability distributions describing physical theories”. J. Math. Phys. 50, 042104 (2009).
  27. “de Finetti reductions for correlations”. J. Math. Phys. 56, 052203 (2015).
  28. K. B. Laskey. “Quantum Causal Networks” (2007). arXiv:0710.1200.
  29. “Towards a formulation of quantum theory as a causally neutral theory of bayesian inference”. Phys. Rev. A 88, 052130 (2013).
  30. “On modifications of reichenbach’s principle of common cause in light of bell’s theorem.”. J. Phys. A: Math. Theor. 47, 424018 (2014).
  31. Tobias Fritz. “Beyond bell’s theorem ii: Scenarios with arbitrary causal structure”. Comm. Math. Phys.Pages 1–44 (2015).
  32. “The lesson of causal discovery algorithms for quantum correlations: Causal explanations of Bell-inequality violations require fine-tuning”. New J. Phys. 17, 033002 (2015).
  33. “Theory-independent limits on correlations from generalized bayesian networks.”. New J. Phys. 16, 113043 (2014).
  34. “A graph-separation theorem for quantum causal models.”. New J. Phys. 17, 073020 (2015).
  35. “Information–theoretic implications of quantum causal structures”. Nat. Commun.6 (2015).
  36. “A quantum advantage for inferring causal structure”. Nat. Phys. 11, 414–420 (2015).
  37. “Quantum causal modelling”. New J. of Phys. 18, 063032 (2016).
  38. “Causation does not explain contextuality”. Quantum 2, 63 (2018).
  39. “Quantum common causes and quantum causal models”. Phys. Rev. X 7, 031021 (2017).
  40. “A quantum causal discovery algorithm”. npj Quant. Inf. 4, 17 (2018).
  41. “Quantum causal models” (2019). arXiv:1906.10726v1.
  42. “Classical causal models cannot faithfully explain Bell nonlocality or Kochen-Specker contextuality in arbitrary scenarios”. Quantum 5, 518 (2021).
  43. “Quantum correlations with no causal order”. Nat. Commun. 3, 1092 (2012).
  44. “Causal and causally separable processes”. New J. of Phys. 18, 093020 (2016).
  45. “Witnessing causal nonseparability”. New J. Phys. 17, 102001 (2015).
  46. “Quantum computations without definite causal structure”. Phys. Rev. A 88, 022318 (2013).
  47. “Computational Advantage from Quantum-Controlled Ordering of Gates”. Phys. Rev. Lett. 113, 250402 (2014).
  48. “Quantum superposition of the order of parties as a communication resource”. Phys. Rev. A 92, 052326 (2015).
  49. “Exponential communication complexity advantage from quantum superposition of the direction of communication”. Phys. Rev. Lett. 117, 100502 (2016).
  50. “Causal order as a resource for quantum communication”. Phys. Rev. A100 (2019).
  51. “Classical communication through quantum causal structures”. Phys. Rev. A 103, 042606 (2021).
  52. L. Hardy. “Towards quantum gravity: a framework for probabilistic theories with non-fixed causal structure”. J. Phys. A: Math. Gen. 40, 3081–3099 (2007).
  53. “Bell’s theorem for temporal order”. Nat. Commun. 10, 3772 (2019).
  54. Lucien Hardy. “Implementation of the quantum equivalence principle”. In Felix Finster, Domenico Giulini, Johannes Kleiner, and Jürgen Tolksdorf, editors, Progress and Visions in Quantum Theory in View of Gravity. Pages 189–220. Springer International Publishing (2020).
  55. “Background Independence and Quantum Causal Structure”. Quantum 6, 865 (2022).
  56. Kavan Modi. “Operational approach to open dynamics and quantifying initial correlations”. Scientific Reports 2, 581 (2012).
  57. “An introduction to operational quantum dynamics”. Open Syst. Inf. Dyn. 24, 1740016 (2017).
  58. “Operational markov condition for quantum processes”. Phys. Rev. Lett. 120, 040405 (2018).
  59. “Quantum markovianity as a supervised learning task”. Int. J. Quantum Inf. 16, 1840010 (2018).
  60. “Witnessing quantum memory in non-Markovian processes”. Quantum 5, 440 (2021).
  61. “Simulation complexity of open quantum dynamics: Connection with tensor networks”. Phys. Rev. Lett. 122, 160401 (2019).
  62. “Quantifying non-markovian memory in a superconducting quantum computer”. Open Systems & Information Dynamics 29, 2250007 (2022).
  63. “Diagnosing and destroying non-markovian noise”. Technical Report SAND-2020-10396691214. Sandia National Lab. (SNL-CA) (2020).
  64. “Demonstration of non-markovian process characterisation and control on a quantum processor”. Nat Commun 11, 6301 (2020).
  65. “Experimental characterization of a non-markovian quantum process”. Phys. Rev. A 104, 022432 (2021).
  66. “Non-markovian quantum process tomography” (2021). arXiv:2106.11722.
  67. “Quantify the non-markovian process with intervening projections in a superconducting processor” (2021). arXiv:2105.03333.
  68. “Multi-time quantum process tomography of a superconducting qubit” (2023). arXiv:2308.00750.
  69. “Experimental superposition of orders of quantum gates”. Nat. Commun. 6, 7913 (2015).
  70. “Experimental verification of an indefinite causal order”. Sci. Adv. 3, e1602589 (2017).
  71. “Experimental entanglement of temporal orders” (2017). arXiv:1712.06884.
  72. “Indefinite causal order in a quantum switch”. Phys. Rev. Lett. 121, 090503 (2018).
  73. “Experimental transmission of quantum information using a superposition of causal orders”. Phys. Rev. Lett. 124, 030502 (2020).
  74. “Increasing communication capacity via superposition of order”. Phys. Rev. Research 2, 033292 (2020).
  75. “Experimental quantum switching for exponentially superior quantum communication complexity”. Phys. Rev. Lett. 122, 120504 (2019).
  76. “Computational advantage from the quantum superposition of multiple temporal orders of photonic gates”. PRX Quantum 2, 010320 (2021).
  77. “Can a quantum state over time resemble a quantum state at a single time?”. Proc. Math. Phys. Eng. Sci. 473, 20170395 (2017).
  78. Robert Oeckl. “A “general boundary” formulation for quantum mechanics and quantum gravity”. Phys. Lett. B 575, 318–324 (2003).
  79. “Transforming quantum operations: Quantum supermaps”. EPL (Europhysics Letters) 83, 30004 (2008).
  80. Paolo Perinotti. “Causal structures and the classification of higher order quantum computations”. Pages 103–127. Springer International Publishing. Cham (2017).
  81. “Theoretical framework for higher-order quantum theory”. Proc. Math. Phys. Eng. Sci. 475, 20180706 (2019).
  82. “Multiple-time states and multiple-time measurements in quantum mechanics”. Phys. Rev. A 79, 052110 (2009).
  83. “Pre- and postselected quantum states: Density matrices, tomography, and kraus operators”. Phys. Rev. A 89, 012121 (2014).
  84. “Connecting processes with indefinite causal order and multi-time quantum states”. New J. Phys. 19, 103022 (2017).
  85. “Entangled histories”. Physica Scripta 2016, 014004 (2016).
  86. “Superdensity operators for spacetime quantum mechanics”. J. High Energ. Phys. 2018, 93 (2018).
  87. “The mathematical language of quantum theory: From uncertainty to entanglement”. Cambridge University Press.  (2011).
  88. A. Jamiołkowski. “Linear transformations which preserve trace and positive semidefiniteness of operators”. Rep. Math. Phys 3, 275–278 (1972).
  89. Man-Duen Choi. “Completely positive linear maps on complex matrices”. Linear Algebra Appl. 10, 285–290 (1975).
  90. “Updating the born rule”. New J. Phys. 20, 053010 (2018).
  91. “Quantum channels with memory”. Phys. Rev. A 72, 062323 (2005).
  92. “Toward a general theory of quantum games”. In Proceedings of 39th ACM STOC. Pages 565–574.  (2006). arXiv:quant-ph/0611234.
  93. “Quantum circuit architecture”. Phys. Rev. Lett. 101, 060401 (2008).
  94. “Theoretical framework for quantum networks”. Phys. Rev. A 80, 022339 (2009).
  95. “Quantum networks: General theory and applications”. Acta Phys. Slovaca 61, 273–390 (2011).
  96. “On the definition and characterisation of multipartite causal (non)separability”. New J. of Phys. 21, 013027 (2019).
  97. Matthew F. Pusey. Private communication (2019).
  98. Persi Diaconis. “Finite forms of de Finetti’s theorem on exchangeability”. Synthese 36, 271–281 (1977).
  99. P. Diaconis and D. Freedman. “Finite Exchangeable Sequences”. Ann. Probab. 8, 745 – 764 (1980).
  100. “A de Finetti representation for finite symmetric quantum states”. J. Math. Phys. 46, 122108 (2005).
  101. “A most compendious and facile quantum de Finetti theorem”. J. Math. Phys. 50, 012105 (2009).

Summary

We haven't generated a summary for this paper yet.

Whiteboard

Paper to Video (Beta)

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Continue Learning

We haven't generated follow-up questions for this paper yet.

Collections

Sign up for free to add this paper to one or more collections.

Tweets

Sign up for free to view the 1 tweet with 0 likes about this paper.