Mutual Information Bounded by Fisher Information (2403.10248v3)
Abstract: We derive a general upper bound to mutual information in terms of the Fisher information. The bound may be further used to derive a lower bound for the Bayesian quadratic cost. These two provide alternatives to other inequalities in the literature (e.g.~the van Trees inequality) that are useful also for cases where the latter ones give trivial bounds. We then generalize them to the quantum case, where they bound the Holevo information in terms of the quantum Fisher information. We illustrate the usefulness of our bounds with a case study in quantum phase estimation. Here, they allow us to adapt to mutual information (useful for global strategies where the prior plays an important role) the known and highly nontrivial bounds for the Fisher information in the presence of noise. The results are also useful in the context of quantum communication, both for continuous and discrete alphabets.
- M. Bethge, D. Rotermund, and K. Pawelzik, Optimal short-term population coding: When fisher information fails, Neural computation 14, 2317 (2002).
- S. Yarrow, E. Challis, and P. Series, Fisher and shannon information in finite neural populations, Neural computation 24, 1740 (2012).
- J. Czajkowski, M. Jarzyna, and R. Demkowicz-Dobrzański, Super-additivity in communication of classical information through quantum channels from a quantum parameter estimation perspective, New Journal of Physics 19, 073034 (2017).
- L. P. Barnes and A. Özgür, Fisher information and mutual information constraints, in 2021 IEEE International Symposium on Information Theory (ISIT) (IEEE, 2021) pp. 2179–2184.
- S. Y. Efroimovich, Information contained in a sequence of observations, Problems in Information Transmission 15, 24 (1979).
- K.-Y. Lee, New Information Inequalities with Applications to Statistics (University of California, Berkeley, 2022).
- R. D. Gill and B. Y. Levit, Applications of the van trees inequality: A bayesian cramér-rao bound, Bernoulli 1, 59 (1995).
- M. J. W. Hall and H. M. Wiseman, Does nonlinear metrology offer improved resolution? answers from quantum information theory, Phys. Rev. X 2, 041006 (2012).
- W. Rzadkowski and R. Demkowicz-Dobrzański, Discrete-to-continuous transition in quantum phase estimation, Phys. Rev. A 96, 032319 (2017).
- M. Hassani, C. Macchiavello, and L. Maccone, Digital quantum estimation, Physical review letters 119, 200502 (2017).
- V. Gebhart, A. Smerzi, and L. Pezzè, Bayesian quantum multiphase estimation algorithm, Phys. Rev. Appl. 16, 014035 (2021).
- C. Butucea, M. Guţă, and L. Artiles, Minimax and adaptive estimation of the Wigner function in quantum homodyne tomography with noisy data, The Annals of Statistics 35, 465 (2007).
- M. Hayashi, Comparison between the cramer-rao and the mini-max approaches in quantum channel estimation, Communications in mathematical physics 304, 689 (2011).
- W. Górecki and R. Demkowicz-Dobrzański, Multiple-phase quantum interferometry: Real and apparent gains of measuring all the phases simultaneously, Phys. Rev. Lett. 128, 040504 (2022).
- W.-N. Chen and A. Özgür, l_q𝑙_𝑞l\_qitalic_l _ italic_q lower bounds on distributed estimation via fisher information, arXiv preprint arXiv:2402.01895 10.48550/arXiv.2402.01895 (2024).
- I. Białynicki-Birula and J. Mycielski, Uncertainty relations for information entropy in wave mechanics, Communications in Mathematical Physics 44, 129 (1975).
- M. J. Hall, Phase resolution and coherent phase states, Journal of Modern Optics 40, 809 (1993), https://doi.org/10.1080/09500349314550841 .
- V. Giovannetti, S. Lloyd, and L. Maccone, Quantum metrology, Phys. Rev. Lett. 96, 010401 (2006).
- M. G. A. Paris, Quantum estimation for quantum technologies, Int. J. Quantum Inf. 07, 125 (2009).
- V. Giovannetti, S. Lloyd, and L. Maccone, Advances in quantum metrology, Nat. Photonics 5, 222 (2011).
- G. Toth and I. Apellaniz, Quantum metrology from a quantum information science perspective, J. Phys. A: Math. Theor. 47, 424006 (2014).
- R. Demkowicz-Dobrzański, M. Jarzyna, and J. Kołodyński, Chapter four - quantum limits in optical interferometry (Elsevier, 2015) pp. 345–435.
- R. Schnabel, Squeezed states of light and their applications in laser interferometers, Phys. Rep. 684, 1 (2017).
- C. L. Degen, F. Reinhard, and P. Cappellaro, Quantum sensing, Rev. Mod. Phys. 89, 035002 (2017).
- L. Maccone and A. Riccardi, Squeezing metrology: A unified framework, Quantum 4, 292 (2020).
- A. Fujiwara and H. Imai, A fibre bundle over manifolds of quantum channels and its application to quantum statistics, J. Phys. A: Math. Theor. 41, 255304 (2008).
- J. Kołodyński and R. Demkowicz-Dobrzański, Phase estimation without a priori phase knowledge in the presence of loss, Phys. Rev. A 82, 053804 (2010).
- B. Escher, R. de Matos Filho, and L. Davidovich, General framework for estimating the ultimate precision limit in noisy quantum-enhanced metrology, Nat. Phys. 7, 406 (2011).
- R. Demkowicz-Dobrzański, J. Kołodyński, and M. Guţă, The elusive heisenberg limit in quantum-enhanced metrology, Nat. Commun. 3, 1063 (2012).
- S. I. Knysh, E. H. Chen, and G. A. Durkin, True limits to precision via unique quantum probe, arXiv:1402.0495 (2014).
- R. Demkowicz-Dobrzański and L. Maccone, Using entanglement against noise in quantum metrology, Phys. Rev. Lett. 113, 250801 (2014).
- R. Demkowicz-Dobrzański, J. Czajkowski, and P. Sekatski, Adaptive quantum metrology under general markovian noise, Phys. Rev. X 7, 041009 (2017).
- S. Zhou and L. Jiang, Asymptotic theory of quantum channel estimation, PRX Quantum 2, 010343 (2021).
- B. S. Clarke and A. R. Barron, Jeffreys’ prior is asymptotically least favorable under entropy risk, Journal of Statistical planning and Inference 41, 37 (1994).
- H. Chen, Y. Chen, and H. Yuan, Information geometry under hierarchical quantum measurement, Phys. Rev. Lett. 128, 250502 (2022).
- T. M. Cover and J. A. Thomas, Elements of information theory (John Wiley & Sons, 2006).
- J. Kołodyński and R. Demkowicz-Dobrzański, Efficient tools for quantum metrology with uncorrelated noise, New J. Phys. 15, 073043 (2013).
Sponsor
Paper Prompts
Sign up for free to create and run prompts on this paper using GPT-5.
Top Community Prompts
Collections
Sign up for free to add this paper to one or more collections.