Sequential measurements thermometry with quantum many-body probes
Abstract: Measuring the temperature of a quantum system is an essential task in almost all aspects of quantum technologies. Theoretically, an optimal strategy for thermometry requires measuring energy which demands full accessibility over the entire system as well as complex entangled measurement basis. In this paper, we take a different approach and show that single qubit sequential measurements in the computational basis not only allows precise thermometry of a many-body system but may also achieve precision beyond the theoretical bound, avoiding demanding energy measurements at equilibrium. To obtain such precision, the time between the two subsequent measurements should be smaller than the thermalization time so that the probe never thermalizes. Therefore, the non-equilibrium dynamics of the system continuously imprint information about temperature in the state of the probe. This allows the sequential measurement scheme to reach precision beyond the accuracy achievable by complex energy measurements on equilibrium probes.
- A. De Pasquale and T. M. Stace, Quantum thermometry, in Thermodynamics in the Quantum Regime (Springer International Publishing, 2018) p. 503–527.
- M. Mehboudi, A. Sanpera, and L. A. Correa, Thermometry in the quantum regime: recent theoretical progress, Journal of Physics A: Mathematical and Theoretical 52, 303001 (2019).
- M. Fujiwara and Y. Shikano, Diamond quantum thermometry: from foundations to applications, Nanotechnology 32, 482002 (2021).
- L. Đačanin Far and M. D. Dramićanin, Luminescence thermometry with nanoparticles: A review, Nanomaterials 13, 10.3390/nano13212904 (2023).
- Y. Chu and J. Cai, Thermodynamic principle for quantum metrology, Phys. Rev. Lett. 128, 200501 (2022).
- E. O’Connor, S. Campbell, and G. T. Landi, Fisher information rates in sequentially measured quantum systems (2024), arXiv:2401.06543 [quant-ph] .
- G. Mihailescu, S. Campbell, and A. K. Mitchell, Thermometry of strongly correlated fermionic quantum systems using impurity probes, Physical Review A 107, 042614 (2023a).
- P. Sekatski and M. Perarnau-Llobet, Optimal nonequilibrium thermometry in markovian environments, Quantum 6, 869 (2022).
- J. Rubio, J. Anders, and L. A. Correa, Global quantum thermometry, Physical Review Letters 127, 190402 (2021).
- G. O. Alves and G. T. Landi, Bayesian estimation for collisional thermometry, Phys. Rev. A 105, 012212 (2022).
- T. Jahnke, S. Lanéry, and G. Mahler, Operational approach to fluctuations of thermodynamic variables in finite quantum systems, Phys. Rev. E 83, 011109 (2011).
- T. M. Stace, Quantum limits of thermometry, Phys. Rev. A 82, 011611 (2010).
- Y. Yang, V. Montenegro, and A. Bayat, Extractable information capacity in sequential measurements metrology, Phys. Rev. Res. 5, 043273 (2023).
- P. Busch, G. Cassinelli, and P. J. Lahti, On the quantum theory of sequential measurements, Foundations of Physics 20, 757 (1990).
- H.-J. Schmidt and J. Gemmer, Sequential measurements and entropy, Journal of Physics: Conference Series 1638, 012007 (2020).
- M. Ban, On sequential measurements with indefinite causal order, Physics Letters A 403, 127383 (2021).
- B. Skinner, J. Ruhman, and A. Nahum, Measurement-induced phase transitions in the dynamics of entanglement, Phys. Rev. X 9, 031009 (2019).
- T. Benoist, J.-L. Fatras, and C. Pellegrini, Limit theorems for quantum trajectories (2023), arXiv:2302.06191 [math.PR] .
- E. Haapasalo, T. Heinosaari, and Y. Kuramochi, Saturation of repeated quantum measurements, Journal of Physics A: Mathematical and Theoretical 49, 33LT01 (2016).
- S. Pouyandeh, F. Shahbazi, and A. Bayat, Measurement-induced dynamics for spin-chain quantum communication and its application for optical lattices, Phys. Rev. A 90, 012337 (2014).
- T. Rybár and M. Ziman, Process estimation in the presence of time-invariant memory effects, Phys. Rev. A 92, 042315 (2015).
- H. Mabuchi, Dynamical identification of open quantum systems, Quantum and Semiclassical Optics: Journal of the European Optical Society Part B 8, 1103 (1996).
- A. De Pasquale, K. Yuasa, and V. Giovannetti, Estimating temperature via sequential measurements, Phys. Rev. A 96, 012316 (2017).
- A. Ritboon, L. Slodička, and R. Filip, Sequential phonon measurements of atomic motion, Quantum Science and Technology 7, 015023 (2022).
- M. Bompais and N. H. Amini, On asymptotic stability of non-demolition quantum trajectories with measurement imperfections (2023), arXiv:2304.02462 [quant-ph] .
- M. Bompais, N. H. Amini, and C. Pellegrini, Parameter estimation for quantum trajectories: Convergence result, in 2022 IEEE 61st Conference on Decision and Control (CDC) (2022) pp. 5161–5166.
- J. Gambetta and H. M. Wiseman, State and dynamical parameter estimation for open quantum systems, Phys. Rev. A 64, 042105 (2001).
- A. H. Kiilerich and K. Mølmer, Quantum zeno effect in parameter estimation, Phys. Rev. A 92, 032124 (2015).
- L. A. Clark, A. Stokes, and A. Beige, Quantum jump metrology, Phys. Rev. A 99, 022102 (2019).
- A. Holevo, in Quantum Probability and Applications to the Quantum Theory of Irreversible Processes (Springer, 1984) pp. 153–172.
- H. Cramér, Mathematical methods of statistics, Vol. 26 (Princeton university press, 1999).
- L. M. Le Cam, Asymptotic methods in statistical decision theory, Springer series in statistics (Springer-Verlag, New York, 1986).
- C. W. Helstrom, Quantum detection and estimation theory, J. Stat. Phys. 1, 231 (1969).
- R. Zamir, A proof of the fisher information inequality via a data processing argument, IEEE Transactions on Information Theory 44, 1246 (1998).
- H. Cramer, Mathematical methods of statistics (Princeton University Press Princeton, 1946) pp. xvi, 575 p. ;.
- C. R. Rao, Information and the accuracy attainable in the estimation of statistical parameters, in Breakthroughs in Statistics: Foundations and Basic Theory, edited by S. Kotz and N. L. Johnson (Springer New York, New York, NY, 1992) pp. 235–247.
- M. G. Paris, Quantum estimation for quantum technology, International Journal of Quantum Information 7, 125 (2009).
- C. Helstrom, Minimum mean-squared error of estimates in quantum statistics, Physics Letters A 25, 101 (1967).
- H. Yuen and M. Lax, Multiple-parameter quantum estimation and measurement of nonselfadjoint observables, IEEE Transactions on Information Theory 19, 740 (1973).
- C. Helstrom and R. Kennedy, Noncommuting observables in quantum detection and estimation theory, IEEE Transactions on Information Theory 20, 16 (1974).
- S. L. Braunstein and C. M. Caves, Statistical distance and the geometry of quantum states, Phys. Rev. Lett. 72, 3439 (1994).
- J. Hájek, A characterization of limiting distributions of regular estimates, Zeitschrift für Wahrscheinlichkeitstheorie und Verwandte Gebiete 14, 323 (1970).
- R. D. Gill and B. Y. Levit, Applications of the van Trees inequality: a Bayesian Cramér-Rao bound, Bernoulli 1, 59 (1995).
- V. Montenegro, U. Mishra, and A. Bayat, Global sensing and its impact for quantum many-body probes with criticality, Phys. Rev. Lett. 126, 200501 (2021).
- A. Bayat and S. Bose, Information-transferring ability of the different phases of a finite xxz spin chain, Phys. Rev. A 81, 012304 (2010).
- S. Bose, Quantum communication through an unmodulated spin chain, Phys. Rev. Lett. 91, 207901 (2003).
- A. Rivas and S. F. Huelga, Open quantum systems, Vol. 10 (Springer, 2012).
- V. Eremeev, V. Montenegro, and M. Orszag, Thermally generated long-lived quantum correlations for two atoms trapped in fiber-coupled cavities, Physical Review A 85, 10.1103/physreva.85.032315 (2012).
- V. Montenegro and M. Orszag, Creation of entanglement of two atoms coupled to two distant cavities with losses, Journal of Physics B: Atomic, Molecular and Optical Physics 44, 154019 (2011).
- V. Montenegro, V. Eremeev, and M. Orszag, Entanglement of two distant qubits driven by thermal environments, Physica Scripta 2012, 014022 (2012).
- C. L. Degen, F. Reinhard, and P. Cappellaro, Quantum sensing, Rev. Mod. Phys. 89, 035002 (2017).
- V. Giovannetti, S. Lloyd, and L. Maccone, Nat. Photonics 5, 222 (2011).
- V. Giovannetti, S. Lloyd, and L. Maccone, Phys. Rev. Lett. 96, 010401 (2006).
- V. Giovannetti, S. Lloyd, and L. Maccone, Science 306, 1330 (2004).
Sponsor
Paper Prompts
Sign up for free to create and run prompts on this paper using GPT-5.
Top Community Prompts
Collections
Sign up for free to add this paper to one or more collections.