Papers
Topics
Authors
Recent
2000 character limit reached

Solving deep-learning density functional theory via variational autoencoders (2403.09788v1)

Published 14 Mar 2024 in physics.comp-ph, cond-mat.dis-nn, cond-mat.mtrl-sci, cond-mat.other, and quant-ph

Abstract: In recent years, machine learning models, chiefly deep neural networks, have revealed suited to learn accurate energy-density functionals from data. However, problematic instabilities have been shown to occur in the search of ground-state density profiles via energy minimization. Indeed, any small noise can lead astray from realistic profiles, causing the failure of the learned functional and, hence, strong violations of the variational property. In this article, we employ variational autoencoders to build a compressed, flexible, and regular representation of the ground-state density profiles of various quantum models. Performing energy minimization in this compressed space allows us to avoid both numerical instabilities and variational biases due to excessive constraints. Our tests are performed on one-dimensional single-particle models from the literature in the field and, notably, on a three-dimensional disordered potential. In all cases, the ground-state energies are estimated with errors below the chemical accuracy and the density profiles are accurately reproduced without numerical artifacts.

Definition Search Book Streamline Icon: https://streamlinehq.com
References (26)
  1. P. Hohenberg and W. Kohn, Inhomogeneous electron gas, Phys. Rev. 136, B864 (1964).
  2. K. Burke, Perspective on density functional theory, J. Chem. Phys. 136, 150901 (2012).
  3. Y. A. Wang and E. A. Carter, Orbital-free kinetic-energy density functional theory, in Theoretical Methods in Condensed Phase Chemistry, edited by S. D. Schwartz (Springer Netherlands, Dordrecht, 2002) pp. 117–184.
  4. T. A. Wesolowski and Y. A. Wang, Recent Progress in Orbital-free Density Functional Theory (World Scientific, Singapore, 2013).
  5. A. J. Cohen, P. Mori-Sánchez, and W. Yang, Challenges for density functional theory, Chem. Rev. 112, 289 (2012).
  6. K. Ryczko, D. A. Strubbe, and I. Tamblyn, Deep learning and density-functional theory, Phys. Rev. A 100, 022512 (2019).
  7. J. Nelson, R. Tiwari, and S. Sanvito, Machine learning density functional theory for the Hubbard model, Phys. Rev. B 99, 075132 (2019).
  8. J. R. Moreno, G. Carleo, and A. Georges, Deep learning the hohenberg-kohn maps of density functional theory, Phys. Rev. Lett. 125, 076402 (2020).
  9. E. Costa, R. Fazio, and S. Pilati, Deep learning nonlocal and scalable energy functionals for quantum ising models, Phys. Rev. B 108, 125113 (2023).
  10. R. Meyer, M. Weichselbaum, and A. W. Hauser, Machine learning approaches toward orbital-free density functional theory: Simultaneous training on the kinetic energy density functional and its functional derivative, J. Chem. Theory Comput. 16, 5685 (2020).
  11. E. Costa, G. Scriva, and S. Pilati, Dataset for “Solving deep learning density functional theory via variational autoencoder”, 10.5281/zenodo.10814856 (2024).
  12. W. Kohn and L. J. Sham, Self-Consistent Equations Including Exchange and Correlation Effects, Phys. Rev. 140, A1133 (1965).
  13. A. Asperti and M. Trentin, Balancing reconstruction error and kullback-leibler divergence in variational autoencoders, IEEE Access 8, 199440 (2020).
  14. J. Han and C. Moraga, The influence of the sigmoid function parameters on the speed of backpropagation learning, in From Natural to Artificial Neural Computation, edited by J. Mira and F. Sandoval (Springer Berlin Heidelberg, Berlin, Heidelberg, 1995) pp. 195–201.
  15. D. P. Kingma and J. Ba, Adam: A method for stochastic optimization (2014), arXiv:1412.6980 .
  16. J. W. Goodman, Speckle phenomena in optics: theory and applications (Roberts and Company Publishers, 2007).
  17. M. Modugno, Collective dynamics and expansion of a bose-einstein condensate in a random potential, Phys. Rev. A 73, 013606 (2006).
  18. S. Pilati and V. K. Varma, Localization of interacting Fermi gases in quasiperiodic potentials, Phys. Rev. A 95, 013613 (2017).
  19. M. Alghadeer, A. Al-Aswad, and F. H. Alharbi, Highly accurate machine learning model for kinetic energy density functional, Phys. Lett. A 414, 127621 (2021).
  20. P. d. Mazo-Sevillano and J. Hermann, Variational principle to regularize machine-learned density functionals: The non-interacting kinetic-energy functional, J. Chem. Phys. 159, 194107 (2023).
  21. S. Dick and M. Fernandez-Serra, Machine learning accurate exchange and correlation functionals of the electronic density, Nat. Commun. 11, 3509 (2020).
  22. J. Yang and J. Whitfield, Machine-learning Kohn–Sham potential from dynamics in time-dependent Kohn–Sham systems, Mach. learn.: Sci. technol. 4, 035022 (2023).
  23. Y. Suzuki, R. Nagai, and J. Haruyama, Machine learning exchange-correlation potential in time-dependent density-functional theory, Phys. Rev. A 101, 050501 (2020).
  24. N. Yoshikawa and M. Sumita, Automatic differentiation for the direct minimization approach to the hartree–fock method, J. Phys. Chem. A 126, 8487 (2022).
  25. C. W. Tan, C. J. Pickard, and W. C. Witt, Automatic differentiation for orbital-free density functional theory, J. Chem. Phys. 158, 124801 (2023).
  26. A. de Camargo, R. T. Q. Chen, and R. A. Vargas-Hernández, Orbital-free density functional theory with continuous normalizing flows (2023), arXiv:2311.13518 .

Summary

We haven't generated a summary for this paper yet.

Whiteboard

Continue Learning

We haven't generated follow-up questions for this paper yet.

Collections

Sign up for free to add this paper to one or more collections.

Tweets

Sign up for free to view the 1 tweet with 16 likes about this paper.