Papers
Topics
Authors
Recent
Search
2000 character limit reached

What Was Your Prompt? A Remote Keylogging Attack on AI Assistants

Published 14 Mar 2024 in cs.CR, cs.AI, and cs.CL | (2403.09751v1)

Abstract: AI assistants are becoming an integral part of society, used for asking advice or help in personal and confidential issues. In this paper, we unveil a novel side-channel that can be used to read encrypted responses from AI Assistants over the web: the token-length side-channel. We found that many vendors, including OpenAI and Microsoft, have this side-channel. However, inferring the content of a response from a token-length sequence alone proves challenging. This is because tokens are akin to words, and responses can be several sentences long leading to millions of grammatically correct sentences. In this paper, we show how this can be overcome by (1) utilizing the power of a LLM to translate these sequences, (2) providing the LLM with inter-sentence context to narrow the search space and (3) performing a known-plaintext attack by fine-tuning the model on the target model's writing style. Using these methods, we were able to accurately reconstruct 29\% of an AI assistant's responses and successfully infer the topic from 55\% of them. To demonstrate the threat, we performed the attack on OpenAI's ChatGPT-4 and Microsoft's Copilot on both browser and API traffic.

Citations (8)

Summary

Paper to Video (Beta)

Whiteboard

No one has generated a whiteboard explanation for this paper yet.

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Continue Learning

We haven't generated follow-up questions for this paper yet.

Collections

Sign up for free to add this paper to one or more collections.

Tweets

Sign up for free to view the 8 tweets with 61 likes about this paper.