Interaction-Driven Instabilities in the Random-Field XXZ Chain (2403.09608v1)
Abstract: Despite enormous efforts devoted to the study of the many-body localization (MBL) phenomenon, the nature of the high-energy behavior of the Heisenberg spin chain in a strong random magnetic field is lacking consensus. Here, we take a step back by exploring the weak interaction limit starting from the Anderson localized (AL) insulator. Through shift-invert diagonalization, we find that below a certain disorder threshold $h*$, weak interactions necessarily lead to ergodic instability, whereas at strong disorder the AL insulator directly turns into MBL. This agrees with a simple interpretation of the avalanche theory for restoration of ergodicity. We further map the phase diagram for the generic XXZ model in the disorder $h$ -- interaction $\Delta$ plane. Taking advantage of the total magnetization conservation, our results unveil the remarkable behavior of the spin-spin correlation functions: in the regime indicated as MBL by standard observables, their exponential decay undergoes a unique inversion of orientation $\xi_z>\xi_x$. We find that the longitudinal length $\xi_z$ is a key quantity for capturing ergodic instabilities, as it increases with system size near the thermal phase, in sharp contrast to its transverse counterpart $\xi_x$.
- P. Jacquod and D. L. Shepelyansky, Emergence of Quantum Chaos in Finite Interacting Fermi Systems, Phys. Rev. Lett. 79, 1837 (1997).
- I. V. Gornyi, A. D. Mirlin, and D. G. Polyakov, Interacting Electrons in Disordered Wires: Anderson Localization and Low-$T$ Transport, Phys. Rev. Lett. 95, 206603 (2005).
- D. M. Basko, I. L. Aleiner, and B. L. Altshuler, Metal-insulator transition in a weakly interacting many-electron system with localized single-particle states, Annals of Physics 321, 1126 (2006).
- M. Žnidarič, T. Prosen, and P. Prelovšek, Many-body localization in the Heisenberg XXZ magnet in a random field, Phys. Rev. B 77, 064426 (2008).
- A. Pal and D. A. Huse, Many-body localization phase transition, Phys. Rev. B 82, 174411 (2010).
- J. H. Bardarson, F. Pollmann, and J. E. Moore, Unbounded Growth of Entanglement in Models of Many-Body Localization, Phys. Rev. Lett. 109, 017202 (2012).
- R. Nandkishore and D. A. Huse, Many-Body Localization and Thermalization in Quantum Statistical Mechanics, Annu. Rev. Condens. Matter Phys. 6, 15 (2015).
- J. Z. Imbrie, On Many-Body Localization for Quantum Spin Chains, J Stat Phys 163, 998 (2016a).
- D. A. Abanin and Z. Papić, Recent progress in many-body localization, Annalen der Physik 529, 1700169 (2017).
- F. Alet and N. Laflorencie, Many-body localization: An introduction and selected topics, Comptes Rendus Physique Quantum simulation / Simulation quantique, 19, 498 (2018).
- D. J. Luitz, N. Laflorencie, and F. Alet, Many-body localization edge in the random-field Heisenberg chain, Phys. Rev. B 91, 081103 (2015).
- A. Chandran, C. R. Laumann, and V. Oganesyan, Finite size scaling bounds on many-body localized phase transitions, arXiv:1509.04285 (2015).
- C. Monthus, Many-Body-Localization Transition in the Strong Disorder Limit: Entanglement Entropy from the Statistics of Rare Extensive Resonances, Entropy 18, 122 (2016).
- A. Goremykina, R. Vasseur, and M. Serbyn, Analytically Solvable Renormalization Group for the Many-Body Localization Transition, Phys. Rev. Lett. 122, 040601 (2019).
- A. Morningstar and D. A. Huse, Renormalization-group study of the many-body localization transition in one dimension, Phys. Rev. B 99, 224205 (2019).
- A. Morningstar, D. A. Huse, and J. Z. Imbrie, Many-body localization near the critical point, Phys. Rev. B 102, 125134 (2020).
- M. Schiró and M. Tarzia, Toy model for anomalous transport and Griffiths effects near the many-body localization transition, Phys. Rev. B 101, 014203 (2020).
- N. Laflorencie, G. Lemarié, and N. Macé, Chain breaking and Kosterlitz-Thouless scaling at the many-body localization transition in the random-field Heisenberg spin chain, Phys. Rev. Research 2, 042033 (2020).
- A. C. Potter, R. Vasseur, and S. A. Parameswaran, Universal Properties of Many-Body Delocalization Transitions, Phys. Rev. X 5, 031033 (2015).
- R. Vosk, D. A. Huse, and E. Altman, Theory of the Many-Body Localization Transition in One-Dimensional Systems, Phys. Rev. X 5, 031032 (2015).
- W. De Roeck and F. Huveneers, Stability and instability towards delocalization in many-body localization systems, Phys. Rev. B 95, 155129 (2017).
- S. Roy, J. T. Chalker, and D. E. Logan, Percolation in Fock space as a proxy for many-body localization, Phys. Rev. B 99, 104206 (2019).
- S. Roy and D. E. Logan, Fock-space correlations and the origins of many-body localization, Phys. Rev. B 101, 134202 (2020).
- H. Ha, A. Morningstar, and D. A. Huse, Many-body resonances in the avalanche instability of many-body localization, Phys. Rev. Lett. 130, 250405 (2023).
- L. Fleishman and P. W. Anderson, Interactions and the Anderson transition, Phys. Rev. B 21, 2366 (1980).
- A. D. Luca and A. Scardicchio, Ergodicity breaking in a model showing many-body localization, EPL 101, 37003 (2013).
- N. Macé, F. Alet, and N. Laflorencie, Multifractal Scalings Across the Many-Body Localization Transition, Phys. Rev. Lett. 123, 180601 (2019).
- P. Sierant, M. Lewenstein, and J. Zakrzewski, Polynomially filtered exact diagonalization approach to many-body localization, Phys. Rev. Lett. 125, 156601 (2020a).
- T. Chanda, P. Sierant, and J. Zakrzewski, Time dynamics with matrix product states: Many-body localization transition of large systems revisited, Phys. Rev. B 101, 035148 (2020).
- P. Sierant, D. Delande, and J. Zakrzewski, Thouless Time Analysis of Anderson and Many-Body Localization Transitions, Phys. Rev. Lett. 124, 186601 (2020b).
- J. A. Kjäll, J. H. Bardarson, and F. Pollmann, Many-Body Localization in a Disordered Quantum Ising Chain, Phys. Rev. Lett. 113, 107204 (2014).
- S. Moudgalya, D. A. Huse, and V. Khemani, Perturbative instability towards delocalization at phase transitions between MBL phases, arXiv:2008.09113 (2020).
- T. B. Wahl, F. Venn, and B. Béri, Local integrals of motion detection of localization-protected topological order, Phys. Rev. B 105, 144205 (2022).
- N. Laflorencie, G. Lemarié, and N. Macé, Topological order in random interacting Ising-Majorana chains stabilized by many-body localization, Phys. Rev. Research 4, L032016 (2022).
- G. Biroli, A. K. Hartmann, and M. Tarzia, Large-deviation analysis of rare resonances for the Many-Body localization transition, arXiv:2312.14873 (2023).
- F. Weiner, F. Evers, and S. Bera, Slow dynamics and strong finite-size effects in many-body localization with random and quasiperiodic potentials, Phys. Rev. B 100, 104204 (2019).
- D. J. Luitz and Y. B. Lev, Absence of slow particle transport in the many-body localized phase, Phys. Rev. B 102, 100202 (2020).
- P. Sierant and J. Zakrzewski, Challenges to observation of many-body localization, Phys. Rev. B 105, 224203 (2022).
- D. Sels and A. Polkovnikov, Dynamical obstruction to localization in a disordered spin chain, Phys. Rev. E 104, 054105 (2021).
- J. Z. Imbrie, Diagonalization and Many-Body Localization for a Disordered Quantum Spin Chain, Phys. Rev. Lett. 117, 027201 (2016b).
- The precise 𝒪(1)𝒪1{\cal{O}}(1)caligraphic_O ( 1 ) value of ζavl.subscript𝜁avl\zeta_{\rm avl.}italic_ζ start_POSTSUBSCRIPT roman_avl . end_POSTSUBSCRIPT is set by the many-body level spacing, and depends on the modelization of the coupling between the ergodic seed and the localized spins.
- P. J. D. Crowley and A. Chandran, Avalanche induced coexisting localized and thermal regions in disordered chains, Phys. Rev. Research 2, 033262 (2020).
- J. Colbois and N. Laflorencie, Breaking the chains: Extreme value statistics and localization in random spin chains, Phys. Rev. B 108, 144206 (2023).
- This expression comes from a single fit trying to capture both limits for the typical AL localization length. The best fit at strong disorder (from h∼2similar-toℎ2h\sim 2italic_h ∼ 2) yields h0=1.13subscriptℎ01.13h_{0}=1.13italic_h start_POSTSUBSCRIPT 0 end_POSTSUBSCRIPT = 1.13 and h0=1.22subscriptℎ01.22h_{0}=1.22italic_h start_POSTSUBSCRIPT 0 end_POSTSUBSCRIPT = 1.22 at weak disorder. ξALsubscript𝜉AL\xi_{\rm{AL}}italic_ξ start_POSTSUBSCRIPT roman_AL end_POSTSUBSCRIPT characterizes the decay of the single-particle probability density. See [70, 71] for further details.
- D. L. Shepelyansky, Coherent Propagation of Two Interacting Particles in a Random Potential, Phys. Rev. Lett. 73, 2607 (1994).
- K. Frahm, A. Müller-Groeling, and J.-L. Pichard, Effective sigma Model Formulation for Two Interacting Electrons in a Disordered Metal, Phys. Rev. Lett. 76, 1509 (1996).
- Dietmar Weinmann, Jean-Louis Pichard, and Yoseph Imry, Thouless numbers for few-particle systems with disorder and interactions, J. Phys. I France 7, 1559 (1997).
- S. P. Lim and D. N. Sheng, Many-body localization and transition by density matrix renormalization group and exact diagonalization studies, Phys. Rev. B 94, 045111 (2016).
- B. Villalonga and B. K. Clark, Characterizing the many-body localization transition through correlations, arXiv:2007.06586 (2020).
- J. Colbois, F. Alet, and N. Laflorencie, In preparation (2024).
- J. M. Deutsch, Quantum statistical mechanics in a closed system, Phys. Rev. A 43, 2046 (1991).
- M. Srednicki, Chaos and quantum thermalization, Phys. Rev. E 50, 888 (1994).
- M. Rigol, V. Dunjko, and M. Olshanii, Thermalization and its mechanism for generic isolated quantum systems, Nature 452, 854 (2008).
- G. De Tomasi, F. Pollmann, and M. Heyl, Efficiently solving the dynamics of many-body localized systems at strong disorder, Phys. Rev. B 99, 241114 (2019).
- V. Hernandez, J. E. Roman, and V. Vidal, SLEPc: A scalable and flexible toolkit for the solution of eigenvalue problems, ACM Trans. Math. Software 31, 351 (2005).
- N. Rosenzweig and C. E. Porter, "Repulsion of Energy Levels" in Complex Atomic Spectra, Phys. Rev. 120, 1698 (1960).
- V. Oganesyan and D. A. Huse, Localization of interacting fermions at high temperature, Phys. Rev. B 75, 155111 (2007).
- S. Kullback and R. A. Leibler, On Information and Sufficiency, Ann. Math. Stat. 22, 79 (1951).
Paper Prompts
Sign up for free to create and run prompts on this paper using GPT-5.
Top Community Prompts
Collections
Sign up for free to add this paper to one or more collections.