Topological responses from gapped Weyl points in 2D altermagnets (2403.09520v2)
Abstract: We study the symmetry requirements for topologically protected spin-polarized Weyl points in 2D altermagnets. The topology is characterized by a quantized $\pi$-Berry phase and the degeneracy is protected by spin-space group symmetries. Gapped phases with finite Chern and/or spin/chirality Chern numbers emerge under different symmetry-breaking mass terms. We investigate the surface and transport properties of these gapped phases using representative electronic tight-binding and magnonic linear spin-wave models. In particular, we calculate the electronic and magnonic Hall currents and discuss implications for experiments.
- A. K. Geim, Science 324, 1530 (2009).
- I. Mazin (The PRX Editors), Phys. Rev. X 12, 040002 (2022).
- J. Nag, B. Das, S. Bhowal, Y. Nishioka, B. Bandyopadhyay, S. Kumar, K. Kuroda, A. Kimura, K. G. Suresh, and A. Alam, “Gdalsi: An antiferromagnetic topological weyl semimetal with non-relativistic spin splitting,” (2023), arXiv:2312.11980 [cond-mat.str-el] .
- Z. Lin, D. Chen, W. Lu, X. Liang, S. Feng, K. Yamagami, J. Osiecki, M. Leandersson, B. Thiagarajan, J. Liu, C. Felser, and J. Ma, “Observation of giant spin splitting and d-wave spin texture in room temperature altermagnet ruo2,” (2024), arXiv:2402.04995 [cond-mat.mtrl-sci] .
- C. W. J. Beenakker and T. Vakhtel, Phys. Rev. B 108, 075425 (2023).
- S. Banerjee and M. S. Scheurer, “Altermagnetic superconducting diode effect,” (2024), arXiv:2402.14071 [cond-mat.supr-con] .
- H. G. Giil, B. Brekke, J. Linder, and A. Brataas, “Quasiclassical theory of superconducting spin-splitter effects and spin-filtering via altermagnets,” (2024), arXiv:2403.04851 [cond-mat.supr-con] .
- Y. Nagae, A. P. Schnyder, and S. Ikegaya, “Spin-polarized specular andreev reflections in altermagnets,” (2024), arXiv:2403.07117 [cond-mat.supr-con] .
- D. Chakraborty and A. M. Black-Schaffer, “Zero-field finite-momentum and field-induced superconductivity in altermagnets,” (2023), arXiv:2309.14427 [cond-mat.supr-con] .
- S. A. A. Ghorashi, T. L. Hughes, and J. Cano, “Altermagnetic routes to majorana modes in zero net magnetization,” (2023), arXiv:2306.09413 [cond-mat.mes-hall] .
- Y.-X. Li and C.-C. Liu, Phys. Rev. B 108, 205410 (2023).
- A. Kitz, physica status solidi (b) 10, 455 (1965).
- W. Brinkman and R. J. Elliott, Journal of Applied Physics 37, 1457 (1966).
- D. Litvin and W. Opechowski, Physica 76, 538 (1974).
- Z. Xiao, J. Zhao, Y. Li, R. Shindou, and Z.-D. Song, “Spin space groups: Full classification and applications,” (2023), arXiv:2307.10364 [cond-mat.mes-hall] .
- J. Ren, X. Chen, Y. Zhu, Y. Yu, A. Zhang, J. Li, Y. Liu, C. Li, and Q. Liu, “Enumeration and representation of spin space groups,” (2023), arXiv:2307.10369 [cond-mat.mtrl-sci] .
- Y. Jiang, Z. Song, T. Zhu, Z. Fang, H. Weng, Z.-X. Liu, J. Yang, and C. Fang, “Enumeration of spin-space groups: Towards a complete description of symmetries of magnetic orders,” (2023), arXiv:2307.10371 [cond-mat.mtrl-sci] .
- X. Chen, J. Ren, J. Li, Y. Liu, and Q. Liu, “Spin space group theory and unconventional magnons in collinear magnets,” (2023), arXiv:2307.12366 [cond-mat.mtrl-sci] .
- C. K. Chiu, Y. H. Chan, and A. P. Schnyder, “Quantized berry phase and surface states under reflection symmetry or space-time inversion symmetry,” (2018), arXiv:1810.04094 [cond-mat.mes-hall] .
- T. Oka and H. Aoki, Phys. Rev. B 79, 081406 (2009).
- R. Matsumoto and S. Murakami, Phys. Rev. Lett. 106, 197202 (2011).
- D. S. Antonenko, R. M. Fernandes, and J. W. F. Venderbos, “Mirror chern bands and weyl nodal loops in altermagnets,” (2024), arXiv:2402.10201 [cond-mat.mes-hall] .
- A. J. Niemi and G. W. Semenoff, Phys. Rev. Lett. 51, 2077 (1983).
Paper Prompts
Sign up for free to create and run prompts on this paper using GPT-5.
Top Community Prompts
Collections
Sign up for free to add this paper to one or more collections.