Papers
Topics
Authors
Recent
Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 88 tok/s
Gemini 2.5 Pro 59 tok/s Pro
GPT-5 Medium 31 tok/s Pro
GPT-5 High 30 tok/s Pro
GPT-4o 110 tok/s Pro
Kimi K2 210 tok/s Pro
GPT OSS 120B 461 tok/s Pro
Claude Sonnet 4.5 38 tok/s Pro
2000 character limit reached

Topological responses from gapped Weyl points in 2D altermagnets (2403.09520v2)

Published 14 Mar 2024 in cond-mat.mes-hall and cond-mat.mtrl-sci

Abstract: We study the symmetry requirements for topologically protected spin-polarized Weyl points in 2D altermagnets. The topology is characterized by a quantized $\pi$-Berry phase and the degeneracy is protected by spin-space group symmetries. Gapped phases with finite Chern and/or spin/chirality Chern numbers emerge under different symmetry-breaking mass terms. We investigate the surface and transport properties of these gapped phases using representative electronic tight-binding and magnonic linear spin-wave models. In particular, we calculate the electronic and magnonic Hall currents and discuss implications for experiments.

Definition Search Book Streamline Icon: https://streamlinehq.com
References (23)
  1. A. K. Geim, Science 324, 1530 (2009).
  2. I. Mazin (The PRX Editors), Phys. Rev. X 12, 040002 (2022).
  3. J. Nag, B. Das, S. Bhowal, Y. Nishioka, B. Bandyopadhyay, S. Kumar, K. Kuroda, A. Kimura, K. G. Suresh,  and A. Alam, “Gdalsi: An antiferromagnetic topological weyl semimetal with non-relativistic spin splitting,”  (2023), arXiv:2312.11980 [cond-mat.str-el] .
  4. Z. Lin, D. Chen, W. Lu, X. Liang, S. Feng, K. Yamagami, J. Osiecki, M. Leandersson, B. Thiagarajan, J. Liu, C. Felser,  and J. Ma, “Observation of giant spin splitting and d-wave spin texture in room temperature altermagnet ruo2,”  (2024), arXiv:2402.04995 [cond-mat.mtrl-sci] .
  5. C. W. J. Beenakker and T. Vakhtel, Phys. Rev. B 108, 075425 (2023).
  6. S. Banerjee and M. S. Scheurer, “Altermagnetic superconducting diode effect,”  (2024), arXiv:2402.14071 [cond-mat.supr-con] .
  7. H. G. Giil, B. Brekke, J. Linder,  and A. Brataas, “Quasiclassical theory of superconducting spin-splitter effects and spin-filtering via altermagnets,”  (2024), arXiv:2403.04851 [cond-mat.supr-con] .
  8. Y. Nagae, A. P. Schnyder,  and S. Ikegaya, “Spin-polarized specular andreev reflections in altermagnets,”  (2024), arXiv:2403.07117 [cond-mat.supr-con] .
  9. D. Chakraborty and A. M. Black-Schaffer, “Zero-field finite-momentum and field-induced superconductivity in altermagnets,”  (2023), arXiv:2309.14427 [cond-mat.supr-con] .
  10. S. A. A. Ghorashi, T. L. Hughes,  and J. Cano, “Altermagnetic routes to majorana modes in zero net magnetization,”  (2023), arXiv:2306.09413 [cond-mat.mes-hall] .
  11. Y.-X. Li and C.-C. Liu, Phys. Rev. B 108, 205410 (2023).
  12. A. Kitz, physica status solidi (b) 10, 455 (1965).
  13. W. Brinkman and R. J. Elliott, Journal of Applied Physics 37, 1457 (1966).
  14. D. Litvin and W. Opechowski, Physica 76, 538 (1974).
  15. Z. Xiao, J. Zhao, Y. Li, R. Shindou,  and Z.-D. Song, “Spin space groups: Full classification and applications,”  (2023), arXiv:2307.10364 [cond-mat.mes-hall] .
  16. J. Ren, X. Chen, Y. Zhu, Y. Yu, A. Zhang, J. Li, Y. Liu, C. Li,  and Q. Liu, “Enumeration and representation of spin space groups,”  (2023), arXiv:2307.10369 [cond-mat.mtrl-sci] .
  17. Y. Jiang, Z. Song, T. Zhu, Z. Fang, H. Weng, Z.-X. Liu, J. Yang,  and C. Fang, “Enumeration of spin-space groups: Towards a complete description of symmetries of magnetic orders,”  (2023), arXiv:2307.10371 [cond-mat.mtrl-sci] .
  18. X. Chen, J. Ren, J. Li, Y. Liu,  and Q. Liu, “Spin space group theory and unconventional magnons in collinear magnets,”  (2023), arXiv:2307.12366 [cond-mat.mtrl-sci] .
  19. C. K. Chiu, Y. H. Chan,  and A. P. Schnyder, “Quantized berry phase and surface states under reflection symmetry or space-time inversion symmetry,”  (2018), arXiv:1810.04094 [cond-mat.mes-hall] .
  20. T. Oka and H. Aoki, Phys. Rev. B 79, 081406 (2009).
  21. R. Matsumoto and S. Murakami, Phys. Rev. Lett. 106, 197202 (2011).
  22. D. S. Antonenko, R. M. Fernandes,  and J. W. F. Venderbos, “Mirror chern bands and weyl nodal loops in altermagnets,”  (2024), arXiv:2402.10201 [cond-mat.mes-hall] .
  23. A. J. Niemi and G. W. Semenoff, Phys. Rev. Lett. 51, 2077 (1983).
Citations (2)

Summary

We haven't generated a summary for this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

X Twitter Logo Streamline Icon: https://streamlinehq.com

Tweets

This paper has been mentioned in 2 posts and received 16 likes.