Quantum Fourier Transform using Dynamic Circuits
Abstract: In dynamic quantum circuits, classical information from mid-circuit measurements is fed forward during circuit execution. This emerging capability of quantum computers confers numerous advantages that can enable more efficient and powerful protocols by drastically reducing the resource requirements for certain core algorithmic primitives. In particular, in the case of the $n$-qubit quantum Fourier transform followed immediately by measurement, the scaling of resource requirements is reduced from $O(n2)$ two-qubit gates in an all-to-all connectivity in the standard unitary formulation to $O(n)$ mid-circuit measurements in its dynamic counterpart without any connectivity constraints. Here, we demonstrate the advantage of dynamic quantum circuits for the quantum Fourier transform on IBM's superconducting quantum hardware with certified process fidelities of $>50\%$ on up to $16$ qubits and $>1\%$ on up to $37$ qubits, exceeding previous reports across all quantum computing platforms. These results are enabled by our contribution of an efficient method for certifying the process fidelity, as well as of a dynamical decoupling protocol for error suppression during mid-circuit measurements and feed-forward within a dynamic quantum circuit that we call ``feed-forward-compensated dynamical decoupling" (FC-DD). Our results demonstrate the advantages of leveraging dynamic circuits in optimizing the compilation of quantum algorithms.
- M. A. Nielsen and I. L. Chuang, Quantum Computation and Quantum Information: 10th Anniversary Edition (Cambridge University Press, 2011).
- P. W. Shor, Fault-tolerant quantum computation (1997a), arXiv:quant-ph/9605011 [quant-ph] .
- B. M. Terhal, Quantum error correction for quantum memories, Rev. Mod. Phys. 87, 307 (2015).
- R. Jozsa, An introduction to measurement based quantum computation, arXiv:0508124 (2005).
- R. Raussendorf, D. E. Browne, and H. J. Briegel, Measurement-based quantum computation on cluster states, Phys. Rev. A 68, 022312 (2003).
- R. Raussendorf, S. Bravyi, and J. Harrington, Long-range quantum entanglement in noisy cluster states, Phys. Rev. A 71, 062313 (2005).
- L. Piroli, G. Styliaris, and J. I. Cirac, Quantum circuits assisted by local operations and classical communication: Transformations and phases of matter, Phys. Rev. Lett. 127, 220503 (2021).
- R. B. Griffiths and C.-S. Niu, Semiclassical fourier transform for quantum computation, Physical Review Letters 76, 3228–3231 (1996).
- P. W. Shor, Polynomial-time algorithms for prime factorization and discrete logarithms on a quantum computer, SIAM Journal on Computing 26, 1484 (1997b), https://doi.org/10.1137/S0097539795293172 .
- A. Y. Kitaev, Quantum measurements and the abelian stabilizer problem (1995), arXiv:quant-ph/9511026 [quant-ph] .
- C. Moore, D. Rockmore, and A. Russell, Generic quantum fourier transforms (2003), arXiv:quant-ph/0304064 [quant-ph] .
- A. G. Fowler, S. J. Devitt, and L. C. L. Hollenberg, Implementation of shor’s algorithm on a linear nearest neighbour qubit array (2004), arXiv:quant-ph/0402196 [quant-ph] .
- B. Park and D. Ahn, Reducing cnot count in quantum fourier transform for the linear nearest-neighbor architecture, Scientific Reports 13, 8638 (2023).
- L. Hales and S. Hallgren, An improved quantum fourier transform algorithm and applications, in Proceedings 41st Annual Symposium on Foundations of Computer Science (2000) pp. 515–525.
- J. Hines and T. Proctor, Scalable full-stack benchmarks for quantum computers (2023), arXiv:2312.14107 [quant-ph] .
- L. Viola and S. Lloyd, Dynamical suppression of decoherence in two-state quantum systems, Phys. Rev. A 58, 2733 (1998).
- K. Khodjasteh and D. A. Lidar, Fault-tolerant quantum dynamical decoupling, Physical Review Letters 95, 180501 (2005).
- G. S. Uhrig, Keeping a quantum bit alive by optimized π𝜋\piitalic_π-pulse sequences, Phys. Rev. Lett. 98, 100504 (2007).
- H. Y. Carr and E. M. Purcell, Effects of diffusion on free precession in nuclear magnetic resonance experiments, Phys. Rev. 94, 630 (1954).
- S. Meiboom and D. Gill, Modified Spin‐Echo Method for Measuring Nuclear Relaxation Times, Review of Scientific Instruments 29, 688 (1958), https://pubs.aip.org/aip/rsi/article-pdf/29/8/688/19287064/688_1_online.pdf .
- D. Suter and G. A. Álvarez, Colloquium: Protecting quantum information against environmental noise, Rev. Mod. Phys. 88, 041001 (2016).
- P. Zanardi, Symmetrizing evolutions, Physics Letters A 258, 77 (1999).
- L. Viola, E. Knill, and S. Lloyd, Dynamical decoupling of open quantum systems, Physical Review Letters 82, 2417 (1999).
- A. M. Souza, Process tomography of robust dynamical decoupling with superconducting qubits, Quantum Information Processing 20, 237 (2021).
- A. Gautam, Arvind, and K. Dorai, Protection of noisy multipartite entangled states of superconducting qubits via universally robust dynamical decoupling schemes (2021), arXiv:2112.05821 [quant-ph] .
- C. Tong, H. Zhang, and B. Pokharel, Empirical learning of dynamical decoupling on quantum processors (2024), arXiv:2403.02294 [quant-ph] .
- 2022 IEEE International Symposium on High-Performance Computer Architecture (HPCA) (2022).
- B. Pokharel and D. A. Lidar, Better-than-classical grover search via quantum error detection and suppression, npj Quantum Information 10, 23 (2024).
- B. Pokharel and D. A. Lidar, Demonstration of algorithmic quantum speedup, Physical Review Letters 130, 210602 (2023).
- A. Maudsley, Modified carr-purcell-meiboom-gill sequence for nmr fourier imaging applications, Journal of Magnetic Resonance (1969) 69, 488 (1986).
- P. Pfeffer, Multidimensional quantum fourier transformation (2023), arXiv:2301.13835 [quant-ph] .
Sponsor
Paper Prompts
Sign up for free to create and run prompts on this paper using GPT-5.
Top Community Prompts
Collections
Sign up for free to add this paper to one or more collections.