Papers
Topics
Authors
Recent
Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 73 tok/s
Gemini 2.5 Pro 42 tok/s Pro
GPT-5 Medium 39 tok/s Pro
GPT-5 High 31 tok/s Pro
GPT-4o 85 tok/s Pro
Kimi K2 202 tok/s Pro
GPT OSS 120B 464 tok/s Pro
Claude Sonnet 4.5 34 tok/s Pro
2000 character limit reached

Detecting the third family of compact stars with normalizing flows (2403.09398v1)

Published 14 Mar 2024 in nucl-th, astro-ph.HE, and hep-ph

Abstract: We explore the anomaly detection framework based on Normalizing Flows (NF) models introduced in \cite{PhysRevC.106.065802} to detect the presence of a large (destabilising) dense matter phase transition in neutron star (NS) observations of masses and radii, and relate the feasibility of detection with parameters of the underlying mass-radius sequence, which is a functional of the dense matter equation of state. Once trained on simulated data featuring continuous $M(R)$ solutions (i.e., no phase transitions), NF is used to determine the likelihood of a first-order phase transition in a given set of $M(R)$ observations featuring a discontinuity, i.e., perform the anomaly detection. Different mock test sets, featuring two branch solutions in the $M(R)$ diagram, were parameterized by the NS mass at which the phase transition occurs, $M_c$, and the radius difference between the heaviest hadronic star and lightest hybrid star, $\Delta R$. We analyze the impact of these parameters on the NF performance in detecting the presence of a first-order phase transition. Among the results, we report that given a set of 15 stars with radius uncertainty of $0.2$ km, a detection of a two-branch solution is possible with 95\% accuracy if $\Delta R > 0.4$ km.

Definition Search Book Streamline Icon: https://streamlinehq.com
References (14)
  1. F. Morawski and M. Bejger, Phys. Rev. C 106, 065802 (2022).
  2. M. G. Alford and S. Han, Eur. Phys. J. A 52, 62 (2016), arXiv:1508.01261 [nucl-th] .
  3. D. J. Rezende and S. Mohamed, “Variational inference with normalizing flows,”  (2016), arXiv:1505.05770 [stat.ML] .
  4. G. Papamakarios, E. Nalisnick, D. J. Rezende, S. Mohamed,  and B. Lakshminarayanan, “Normalizing flows for probabilistic modeling and inference,”  (2021), arXiv:1912.02762 [stat.ML] .
  5. C. Durkan, A. Bekasov, I. Murray,  and G. Papamakarios, “nflows: normalizing flows in pytorch,”  (2020).
  6. M. Branchesi et al., JCAP 07, 068 (2023), arXiv:2303.15923 [gr-qc] .
  7. M. Evans et al.,   (2021), arXiv:2109.09882 [astro-ph.IM] .
  8. D. P. Kingma and P. Dhariwal, “Glow: Generative flow with invertible 1x1 convolutions,”  (2018), arXiv:1807.03039 [stat.ML] .
  9. D. P. Kingma and J. Ba, arXiv preprint arXiv:1412.6980  (2014).
  10. M. Majnik and Z. Bosnić, Intelligent data analysis 17, 531 (2013).
  11. A. P. Bradley, Pattern Recognition 30, 1145 (1997).
  12. S. Typel and H. H. Wolter, Nucl. Phys. A 656, 331 (1999).
  13. T. Hatsuda and T. Kunihiro, Phys. Rept. 247, 221 (1994), arXiv:hep-ph/9401310 .
  14. C. A. Raithel and E. R. Most, Phys. Rev. Lett. 130, 201403 (2023), arXiv:2208.04294 [astro-ph.HE] .

Summary

We haven't generated a summary for this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

X Twitter Logo Streamline Icon: https://streamlinehq.com

Tweets

This paper has been mentioned in 2 posts and received 0 likes.

Don't miss out on important new AI/ML research

See which papers are being discussed right now on X, Reddit, and more:

“Emergent Mind helps me see which AI papers have caught fire online.”

Philip

Philip

Creator, AI Explained on YouTube