Spinfoam Models for Quantum Gravity: Overview (2403.09364v2)
Abstract: In the quest of a physical theory of quantum gravity, spin foam models, or in short spinfoams, propose a well-defined path integral summing over quantized discrete space-time geometries. At the crossroad of topological quantum field theory, dynamical triangulations, Regge calculus, and loop quantum gravity, this framework provides a non-perturbative and background independent quantization of general relativity. It defines transition amplitudes between quantum states of geometry, and gives a precise picture of the Planck scale geometry with quantized areas and volumes. Gravity in three space-time dimensions is exactly quantized in terms of the Ponzano-Regge state-sum and Turaev-Viro topological invariants. In four space-time dimensions, gravity is formulated as a topological theory, of the BF type, with extra constraints, and hence quantized as a topological state-sum filled with defects. This leads to the Engle-Pereira-Rovelli-Livine (EPRL) spinfoam model, that can be used for explicit quantum gravity computations, for example for resolving the Big Bang singularity by a bounce or in black-to-white hole transition probability amplitudes.
- M. Blau, “Lecture Notes on General Relativity,” 2023. Universität Bern, available on http://www.blau.itp.unibe.ch/GRLecturenotes.html.
- E. R. Livine, “The Spinfoam Framework for Quantum Gravity,” arXiv:1101.5061. Habilitation Thesis 2010, ENS de Lyon (France).
- A. Perez, “The Spin Foam Approach to Quantum Gravity,” Living Rev. Rel. 16 (2013) 3, arXiv:1205.2019.
- J. Engle and S. Speziale, Spin Foams: Foundations. 2023. arXiv:2310.20147.
- C. Rovelli and F. Vidotto, Covariant Loop Quantum Gravity: An Elementary Introduction to Quantum Gravity and Spinfoam Theory. Cambridge Monographs on Mathematical Physics. Cambridge University Press, 11, 2014.
- L. Freidel, K. Krasnov, and R. Puzio, “BF description of higher dimensional gravity theories,” Adv. Theor. Math. Phys. 3 (1999) 1289–1324, arXiv:hep-th/9901069.
- G. Long, C.-Y. Lin, and Y. Ma, “Coherent intertwiner solution of simplicity constraint in all dimensional loop quantum gravity,” Phys. Rev. D 100 (2019), no. 6, 064065, arXiv:1906.06534.
- G. Long and Y. Ma, “General geometric operators in all dimensional loop quantum gravity,” Phys. Rev. D 101 (2020), no. 8, 084032, arXiv:2003.03952.
- Y. Ling and L. Smolin, “Supersymmetric spin networks and quantum supergravity,” Phys. Rev. D 61 (2000) 044008, arXiv:hep-th/9904016.
- Y. Ling and L. Smolin, “Eleven-dimensional supergravity as a constrained topological field theory,” Nucl. Phys. B 601 (2001) 191–208, arXiv:hep-th/0003285.
- Y. Ling, Extending loop quantum gravity to supergravity. PhD thesis, Imperial College (London, UK), 2002.
- Y. Ling, R.-S. Tung, and H.-Y. Guo, “Supergravity and Yang-Mills theories as generalized topological fields with constraints,” Phys. Rev. D 70 (2004) 044045, arXiv:hep-th/0310141.
- E. R. Livine and R. Oeckl, “Three-dimensional Quantum Supergravityand Supersymmetric Spin Foam Models,” Adv. Theor. Math. Phys. 7 (2003), no. 6, 951–1001, arXiv:hep-th/0307251.
- E. R. Livine and J. P. Ryan, “N=2 supersymmetric spin foams in three dimensions,” Class. Quant. Grav. 25 (2008) 175014, arXiv:0710.3540.
- V. Baccetti, E. R. Livine, and J. P. Ryan, “The Particle interpretation of N = 1 supersymmetric spin foams,” Class. Quant. Grav. 27 (2010) 225022, arXiv:1004.0672.
- M. P. Reisenberger and C. Rovelli, “’Sum over surfaces’ form of loop quantum gravity,” Phys. Rev. D 56 (1997) 3490–3508, arXiv:gr-qc/9612035.
- A. Perez, “The Spin-foam-representation of LQG,” arXiv:gr-qc/0601095.
- F. Archer and R. M. Williams, “The Turaev-Viro state sum model and three-dimensional quantum gravity,” Phys. Lett. B 273 (1991) 438–444.
- C. Rovelli, “The Basis of the Ponzano-Regge-Turaev-Viro-Ooguri quantum gravity model in the loop representation basis,” Phys. Rev. D 48 (1993) 2702–2707, arXiv:hep-th/9304164.
- L. Freidel and D. Louapre, “Ponzano-Regge model revisited I: Gauge fixing, observables and interacting spinning particles,” Class. Quant. Grav. 21 (2004) 5685–5726, arXiv:hep-th/0401076.
- J. W. Barrett and I. Naish-Guzman, “The Ponzano-Regge model,” Class. Quant. Grav. 26 (2009) 155014, arXiv:0803.3319.
- J. Engle, E. Livine, R. Pereira, and C. Rovelli, “LQG vertex with finite Immirzi parameter,” Nucl. Phys. B 799 (2008) 136–149, arXiv:0711.0146.
- E. R. Livine and S. Speziale, “Consistently Solving the Simplicity Constraints for Spinfoam Quantum Gravity,” EPL 81 (2008), no. 5, 50004, arXiv:0708.1915.
- P. Donà, M. Fanizza, G. Sarno, and S. Speziale, “Numerical study of the Lorentzian Engle-Pereira-Rovelli-Livine spin foam amplitude,” Phys. Rev. D 100 (2019), no. 10, 106003, arXiv:1903.12624.
- J. C. Baez, “Spin foam models,” Class. Quant. Grav. 15 (1998) 1827–1858, arXiv:gr-qc/9709052.
- A. Ashtekar and J. Lewandowski, “Projective techniques and functional integration for gauge theories,” J. Math. Phys. 36 (1995) 2170–2191, arXiv:gr-qc/9411046.
- C. Rovelli and L. Smolin, “Spin networks and quantum gravity,” Phys. Rev. D 52 (1995) 5743–5759, arXiv:gr-qc/9505006.
- A. Ashtekar and J. Lewandowski, “Quantum theory of geometry. 1: Area operators,” Class. Quant. Grav. 14 (1997) A55–A82, arXiv:gr-qc/9602046.
- A. Ashtekar and J. Lewandowski, “Quantum theory of geometry. 2. Volume operators,” Adv. Theor. Math. Phys. 1 (1998) 388–429, arXiv:gr-qc/9711031.
- L. Freidel and E. R. Livine, “The Fine Structure of SU(2) Intertwiners from U(N) Representations,” J. Math. Phys. 51 (2010) 082502, arXiv:0911.3553.
- E. Bianchi, P. Dona, and S. Speziale, “Polyhedra in loop quantum gravity,” Phys. Rev. D 83 (2011) 044035, arXiv:1009.3402.
- E. R. Livine, “Deformations of Polyhedra and Polygons by the Unitary Group,” J. Math. Phys. 54 (2013) 123504, arXiv:1307.2719.
- L. Freidel and S. Speziale, “Twisted geometries: A geometric parametrisation of SU(2) phase space,” Phys. Rev. D 82 (2010) 084040, arXiv:1001.2748.
- B. Dittrich and J. P. Ryan, “Simplicity in simplicial phase space,” Phys. Rev. D 82 (2010) 064026, arXiv:1006.4295.
- J. Brunnemann and T. Thiemann, “Simplification of the spectral analysis of the volume operator in loop quantum gravity,” Class. Quant. Grav. 23 (2006) 1289–1346, arXiv:gr-qc/0405060.
- E. Bianchi and H. M. Haggard, “Discreteness of the volume of space from Bohr-Sommerfeld quantization,” Phys. Rev. Lett. 107 (2011) 011301, arXiv:1102.5439.
- R. Penrose, “Angular momentum: an approach to combinatorial space-time,”. available online at https://math.ucr.edu/home/baez/penrose/.
- J. W. Barrett and B. W. Westbury, “Spherical categories,” Adv. Math. 143 (1999) 357–375, arXiv:hep-th/9310164.
- L. Freidel and E. R. Livine, “Ponzano-Regge model revisited III: Feynman diagrams and effective field theory,” Class. Quant. Grav. 23 (2006) 2021–2062, arXiv:hep-th/0502106.
- A. Baratin and L. Freidel, “Hidden Quantum Gravity in 3-D Feynman diagrams,” Class. Quant. Grav. 24 (2007) 1993–2026, arXiv:gr-qc/0604016.
- A. Baratin and L. Freidel, “Hidden Quantum Gravity in 4-D Feynman diagrams: Emergence of spin foams,” Class. Quant. Grav. 24 (2007) 2027–2060, arXiv:hep-th/0611042.
- D. V. Boulatov, “A Model of three-dimensional lattice gravity,” Mod. Phys. Lett. A 7 (1992) 1629–1646, arXiv:hep-th/9202074.
- R. De Pietri, L. Freidel, K. Krasnov, and C. Rovelli, “Barrett-Crane model from a Boulatov-Ooguri field theory over a homogeneous space,” Nucl. Phys. B 574 (2000) 785–806, arXiv:hep-th/9907154.
- M. P. Reisenberger and C. Rovelli, “Space-time as a Feynman diagram: The Connection formulation,” Class. Quant. Grav. 18 (2001) 121–140, arXiv:gr-qc/0002095.
- L. Freidel, “Group field theory: An Overview,” Int. J. Theor. Phys. 44 (2005) 1769–1783, arXiv:hep-th/0505016.
- D. Oriti, “The Group field theory approach to quantum gravity,” arXiv:gr-qc/0607032.
- B. Dittrich, F. C. Eckert, and M. Martin-Benito, “Coarse graining methods for spin net and spin foam models,” New J. Phys. 14 (2012) 035008, arXiv:1109.4927.
- Y. Ding and C. Rovelli, “Physical boundary Hilbert space and volume operator in the Lorentzian new spin-foam theory,” Class. Quant. Grav. 27 (2010) 205003, arXiv:1006.1294.
- M. Dupuis and E. R. Livine, “Lifting SU(2) Spin Networks to Projected Spin Networks,” Phys. Rev. D 82 (2010) 064044, arXiv:1008.4093.
- R. Oeckl and H. Pfeiffer, “The Dual of pure nonAbelian lattice gauge theory as a spin foam model,” Nucl. Phys. B 598 (2001) 400–426, arXiv:hep-th/0008095.
- A. Perez and C. Rovelli, “A Spin foam model without bubble divergences,” Nucl. Phys. B 599 (2001) 255–282, arXiv:gr-qc/0006107.
- F. Girelli, R. Oeckl, and A. Perez, “Spin foam diagrammatics and topological invariance,” Class. Quant. Grav. 19 (2002) 1093–1108, arXiv:gr-qc/0111022.
- B. Bahr, F. Hellmann, W. Kaminski, M. Kisielowski, and J. Lewandowski, “Operator Spin Foam Models,” Class. Quant. Grav. 28 (2011) 105003, arXiv:1010.4787.
- G. T. Horowitz, “Exactly Soluble Diffeomorphism Invariant Theories,” Commun. Math. Phys. 125 (1989) 417.
- D. B. Ray and I. M. Singer, “Analytic Torsion for Complex Manifolds,” Annals of Mathematics 98 (1973), no. 1, 154–177.
- V. Bonzom and M. Smerlak, “Bubble divergences from twisted cohomology,” Commun. Math. Phys. 312 (2012) 399–426, arXiv:1008.1476.
- V. Bonzom and M. Smerlak, “Gauge symmetries in spinfoam gravity: the case for ’cellular quantization’,” Phys. Rev. Lett. 108 (2012) 241303, arXiv:1201.4996.
- M. P. Reisenberger, “A Lattice world sheet sum for 4-d Euclidean general relativity,” arXiv:gr-qc/9711052.
- L. Freidel, “A Ponzano-Regge model of Lorentzian 3-dimensional gravity,” Nucl. Phys. B Proc. Suppl. 88 (2000) 237–240, arXiv:gr-qc/0102098.
- S. Davids, A State sum model for (2+1) Lorentzian quantum gravity. PhD thesis, Nottingham University (UK), 2000. arXiv:gr-qc/0110114.
- G. Ponzano and T. Regge, “Semiclassical Limit of Racah Coefficients,” pp 1-58 of Spectroscopic and Group Theoretical Methods in Physics. Block, F. (ed.). New York, John Wiley and Sons, Inc., 1968. (10, 1969).
- Wikipedia, “6-j symbol — Wikipedia, The Free Encyclopedia.” https://en.wikipedia.org/wiki/6-j_symbol, 2023. [Online; accessed 24-November-2023].
- K. Schulten and R. G. Gordon, “Semiclassical Approximations to 3j and 6j coefficients for Quantum Mechanical Coupling of Angular Momenta,” J. Math. Phys. 16 (1975) 1971–1988.
- J. Roberts, “Classical 6j-symbols and the tetrahedron,” Geom. Topol. 3 (1999), no. 1, 21–66, arXiv:math-ph/9812013.
- J. W. Barrett and C. M. Steele, “Asymptotics of relativistic spin networks,” Class. Quant. Grav. 20 (2003) 1341–1362, arXiv:gr-qc/0209023.
- L. Freidel and D. Louapre, “Asymptotics of 6j and 10j symbols,” Class. Quant. Grav. 20 (2003) 1267–1294, arXiv:hep-th/0209134.
- H. Ooguri, “Partition functions and topology changing amplitudes in the 3-D lattice gravity of Ponzano and Regge,” Nucl. Phys. B 382 (1992) 276–304, arXiv:hep-th/9112072.
- K. Schulten and R. G. Gordon, “Exact Recursive Evaluation of 3J and 6J Coefficients for Quantum Mechanical Coupling of Angular Momenta,” J. Math. Phys. 16 (1975) 1961–1970.
- V. Bonzom and E. R. Livine, “A New Recursion Relation for the 6j-Symbol,” Annales Henri Poincare 13 (2012) 1083–1099, arXiv:1103.3415.
- V. Bonzom and L. Freidel, “The Hamiltonian constraint in 3d Riemannian loop quantum gravity,” Class. Quant. Grav. 28 (2011) 195006, arXiv:1101.3524.
- L. Freidel and D. Louapre, “Ponzano-Regge model revisited II: Equivalence with Chern-Simons,” arXiv:gr-qc/0410141.
- J. W. Barrett and T. J. Foxon, “Semiclassical limits of simplicial quantum gravity,” Class. Quant. Grav. 11 (1994) 543–556, arXiv:gr-qc/9310016.
- V. Bonzom, F. Costantino, and E. R. Livine, “Duality between Spin networks and the 2D Ising model,” Commun. Math. Phys. 344 (2016), no. 2, 531–579, arXiv:1504.02822.
- B. Dittrich, C. Goeller, E. Livine, and A. Riello, “Quasi-local holographic dualities in non-perturbative 3d quantum gravity I – Convergence of multiple approaches and examples of Ponzano–Regge statistical duals,” Nucl. Phys. B 938 (2019) 807–877, arXiv:1710.04202.
- V. G. Turaev and O. Y. Viro, “State sum invariants of 3 manifolds and quantum 6j symbols,” Topology 31 (1992) 865–902.
- E. Witten, “(2+1)-Dimensional Gravity as an Exactly Soluble System,” Nucl. Phys. B 311 (1988) 46.
- E. Witten, “Quantum Field Theory and the Jones Polynomial,” Commun. Math. Phys. 121 (1989) 351–399.
- B. Dittrich and M. Geiller, “Quantum gravity kinematics from extended TQFTs,” New J. Phys. 19 (2017), no. 1, 013003, arXiv:1604.05195.
- M. Dupuis, L. Freidel, and F. Girelli, “Discretization of 3d gravity in different polarizations,” Phys. Rev. D 96 (2017), no. 8, 086017, arXiv:1701.02439.
- E. R. Livine, “3d Quantum Gravity: Coarse-Graining and q𝑞qitalic_q-Deformation,” Annales Henri Poincare 18 (2017), no. 4, 1465–1491, arXiv:1610.02716.
- N. Y. Reshetikhin and V. G. Turaev, “Ribbon graphs and their invariants derived from quantum groups,” Commun. Math. Phys. 127 (1990) 1–26.
- R. De Pietri and L. Freidel, “so(4) Plebanski action and relativistic spin foam model,” Class. Quant. Grav. 16 (1999) 2187–2196, arXiv:gr-qc/9804071.
- S. Holst, “Barbero’s Hamiltonian derived from a generalized Hilbert-Palatini action,” Phys. Rev. D 53 (1996) 5966–5969, arXiv:gr-qc/9511026.
- A. Perez and C. Rovelli, “Physical effects of the Immirzi parameter,” Phys. Rev. D 73 (2006) 044013, arXiv:gr-qc/0505081.
- L. Freidel, D. Minic, and T. Takeuchi, “Quantum gravity, torsion, parity violation and all that,” Phys. Rev. D 72 (2005) 104002, arXiv:hep-th/0507253.
- L. Freidel and S. Speziale, “On the relations between gravity and BF theories,” SIGMA 8 (2012) 032, arXiv:1201.4247.
- K. Krasnov, “Gravity as BF theory plus potential,” Int. J. Mod. Phys. A 24 (2009) 2776–2782, arXiv:0907.4064.
- L. Freidel and A. Starodubtsev, “Quantum gravity in terms of topological observables,” arXiv:hep-th/0501191.
- L. Crane and D. Yetter, “A Categorical construction of 4-D topological quantum field theories,” 3, 1993. arXiv:hep-th/9301062.
- H. Pfeiffer, “Four-dimensional lattice gauge theory with ribbon categories and the Crane-Yetter state sum,” J. Math. Phys. 42 (2001) 5272–5305, arXiv:hep-th/0106029.
- S. Alexandrov and E. R. Livine, “SU(2) loop quantum gravity seen from covariant theory,” Phys. Rev. D 67 (2003) 044009, arXiv:gr-qc/0209105.
- J. W. Barrett and L. Crane, “A Lorentzian signature model for quantum general relativity,” Class. Quant. Grav. 17 (2000) 3101–3118, arXiv:gr-qc/9904025.
- A. Perez and C. Rovelli, “Spin foam model for Lorentzian general relativity,” Phys. Rev. D 63 (2001) 041501, arXiv:gr-qc/0009021.
- J. D. Christensen, I. Khavkine, E. R. Livine, and S. Speziale, “Sub-leading asymptotic behaviour of area correlations in the Barrett-Crane model,” Class. Quant. Grav. 27 (2010) 035012, arXiv:0908.4476.
- J. W. Barrett, R. J. Dowdall, W. J. Fairbairn, F. Hellmann, and R. Pereira, “Lorentzian spin foam amplitudes: Graphical calculus and asymptotics,” Class. Quant. Grav. 27 (2010) 165009, arXiv:0907.2440.
- M. Christodoulou, F. D’Ambrosio, and C. Theofilis, “Geometry Transition in Spinfoams,” 2, 2023. arXiv:2302.12622.
- M. Han, H. Liu, D. Qu, F. Vidotto, and C. Zhang, “Cosmological Dynamics from Covariant Loop Quantum Gravity with Scalar Matter,” arXiv:2402.07984.
- A. Banburski, L.-Q. Chen, L. Freidel, and J. Hnybida, “Pachner moves in a 4d Riemannian holomorphic Spin Foam model,” Phys. Rev. D 92 (2015), no. 12, 124014, arXiv:1412.8247.
- C. Rovelli, “Graviton propagator from background-independent quantum gravity,” Phys. Rev. Lett. 97 (2006) 151301, arXiv:gr-qc/0508124.
- E. R. Livine, S. Speziale, and J. L. Willis, “Towards the graviton from spinfoams: Higher order corrections in the 3-D toy model,” Phys. Rev. D 75 (2007) 024038, arXiv:gr-qc/0605123.
- E. Alesci, E. Bianchi, and C. Rovelli, “LQG propagator: III. The New vertex,” Class. Quant. Grav. 26 (2009) 215001, arXiv:0812.5018.
- C. Rovelli and F. Vidotto, “Stepping out of Homogeneity in Loop Quantum Cosmology,” Class. Quant. Grav. 25 (2008) 225024, arXiv:0805.4585.
- E. R. Livine and M. Martin-Benito, “Classical Setting and Effective Dynamics for Spinfoam Cosmology,” Class. Quant. Grav. 30 (2013) 035006, arXiv:1111.2867.
- F. Gozzini and F. Vidotto, “Primordial Fluctuations From Quantum Gravity,” Front. Astron. Astrophys. Cosmol. 7 (2021) 629466, arXiv:1906.02211.
- B. Dittrich and S. Steinhaus, “Time evolution as refining, coarse graining and entangling,” New J. Phys. 16 (2014) 123041, arXiv:1311.7565.
- B. Bahr and S. Steinhaus, “Numerical evidence for a phase transition in 4d spin foam quantum gravity,” Phys. Rev. Lett. 117 (2016), no. 14, 141302, arXiv:1605.07649.
- S. Steinhaus, “Coarse Graining Spin Foam Quantum Gravity—A Review,” Front. in Phys. 8 (2020) 295, arXiv:2007.01315.
- S. K. Asante, B. Dittrich, F. Girelli, A. Riello, and P. Tsimiklis, “Quantum geometry from higher gauge theory,” Class. Quant. Grav. 37 (2020), no. 20, 205001, arXiv:1908.05970.
- V. Rivasseau, “Quantum Gravity and Renormalization: The Tensor Track,” AIP Conf. Proc. 1444 (2012), no. 1, 18–29, arXiv:1112.5104.
- R. Gurau, “A review of the large N limit of tensor models,” arXiv:1209.4295.
- D. Oriti, L. Sindoni, and E. Wilson-Ewing, “Emergent Friedmann dynamics with a quantum bounce from quantum gravity condensates,” Class. Quant. Grav. 33 (2016), no. 22, 224001, arXiv:1602.05881.
- L. Marchetti, D. Oriti, A. G. A. Pithis, and J. Thürigen, “Mean-Field Phase Transitions in Tensorial Group Field Theory Quantum Gravity,” Phys. Rev. Lett. 130 (2023), no. 14, 141501, arXiv:2211.12768.
- S. K. Asante, B. Dittrich, and J. Padua-Arguelles, “Effective spin foam models for Lorentzian quantum gravity,” Class. Quant. Grav. 38 (2021), no. 19, 195002, arXiv:2104.00485.
- S. K. Asante, B. Dittrich, and S. Steinhaus, “Spin foams, Refinement limit and Renormalization,” arXiv:2211.09578.
- B. Dittrich and A. Kogios, “From spin foams to area metric dynamics to gravitons,” Class. Quant. Grav. 40 (2023), no. 9, 095011, arXiv:2203.02409.
- M. Han, H. Liu, and D. Qu, “Complex critical points in Lorentzian spinfoam quantum gravity: Four-simplex amplitude and effective dynamics on a double-ΔΔ\Deltaroman_Δ3 complex,” Phys. Rev. D 108 (2023), no. 2, 026010, arXiv:2301.02930.
- F. Gozzini, Spin foam models of quantum gravity : advances through new techniques and numerical codes. PhD thesis, Aix-Marseille U., 2021.
- P. Dona and P. Frisoni, “How-to Compute EPRL Spin Foam Amplitudes,” Universe 8 (2022), no. 4, 208, arXiv:2202.04360.
- Springer Nature Singapore, Singapore, 2023. arXiv:2212.14396.
Paper Prompts
Sign up for free to create and run prompts on this paper using GPT-5.
Top Community Prompts
Collections
Sign up for free to add this paper to one or more collections.