Subsystem Symmetry Fractionalization and Foliated Field Theory
Abstract: Topological quantum matter exhibits a range of exotic phenomena when enriched by subdimensional symmetries. This includes new features beyond those that appear in the conventional setting of global symmetry enrichment. A recently discovered example is a type of subsystem symmetry fractionalization that occurs through a different mechanism to global symmetry fractionalization. In this work we extend the study of subsystem symmetry fractionalization through new examples derived from the general principle of embedding subsystem symmetry into higher-form symmetry. This leads to new types of symmetry fractionalization that are described by foliation dependent higher-form symmetries. This leads to field theories and lattice models that support previously unseen anomalous subsystem symmetry fractionalization. Our work expands the range of exotic topological physics that is enabled by subsystem symmetry in field theory and on the lattice.
- Pergamon Press, 1958. http://linkinghub.elsevier.com/retrieve/pii/0891391958902006.
- F. Benini, C. Córdova, and P.-S. Hsin, “On 2-Group Global Symmetries and their Anomalies,” JHEP 03 (2019) 118, arXiv:1803.09336 [hep-th].
- P.-S. Hsin and A. Turzillo, “Symmetry-enriched quantum spin liquids in (3 + 1)d𝑑ditalic_d,” JHEP 09 (2020) 022, arXiv:1904.11550 [cond-mat.str-el].
- M. Barkeshli, P. Bonderson, M. Cheng, and Z. Wang, “Symmetry Fractionalization, Defects, and Gauging of Topological Phases,” Phys. Rev. B 100 no. 11, (2019) 115147, arXiv:1410.4540 [cond-mat.str-el].
- J. C. Teo, T. L. Hughes, and E. Fradkin, “Theory of twist liquids: Gauging an anyonic symmetry,” Annals of Physics 360 (2015) 349–445.
- N. Tarantino, N. H. Lindner, and L. Fidkowski, “Symmetry fractionalization and twist defects,” New Journal of Physics 18 (2016) 35006. http://stacks.iop.org/1367-2630/18/i=3/a=035006.
- D. C. Tsui, H. L. Stormer, and A. C. Gossard, “Two-dimensional magnetotransport in the extreme quantum limit,” Physical Review Letters 48 (5, 1982) 1559–1562. https://journals.aps.org/prl/abstract/10.1103/PhysRevLett.48.1559.
- R. B. Laughlin, “Anomalous quantum hall effect: An incompressible quantum fluid with fractionally charged excitations,” Physical Review Letters 50 (5, 1983) 1395–1398. https://journals.aps.org/prl/abstract/10.1103/PhysRevLett.50.1395.
- D. V. Else and R. Thorngren, “Crystalline topological phases as defect networks,” Physical Review B 99 (10, 2019) . http://arxiv.org/abs/1810.10539http://dx.doi.org/10.1103/PhysRevB.99.115116.
- D. Gaiotto, A. Kapustin, N. Seiberg, and B. Willett, “Generalized Global Symmetries,” JHEP 02 (2015) 172, arXiv:1412.5148 [hep-th].
- X.-G. Wen, “Emergent anomalous higher symmetries from topological order and from dynamical electromagnetic field in condensed matter systems,” Phys. Rev. B 99 no. 20, (2019) 205139, arXiv:1812.02517 [cond-mat.str-el].
- J. McGreevy, “Generalized Symmetries in Condensed Matter,” arXiv:2204.03045 [cond-mat.str-el].
- C. Cordova, T. T. Dumitrescu, K. Intriligator, and S.-H. Shao, “Snowmass White Paper: Generalized Symmetries in Quantum Field Theory and Beyond,” in Snowmass 2021. 5, 2022. arXiv:2205.09545 [hep-th].
- A. Kapustin and R. Thorngren, “Fermionic SPT phases in higher dimensions and bosonization,” JHEP 10 (2017) 080, arXiv:1701.08264 [cond-mat.str-el].
- P.-S. Hsin and S.-H. Shao, “Lorentz Symmetry Fractionalization and Dualities in (2+1)d,” SciPost Phys. 8 (2020) 018, arXiv:1909.07383 [cond-mat.str-el].
- M. Barkeshli, Y.-A. Chen, P.-S. Hsin, and N. Manjunath, “Classification of (2+1)D invertible fermionic topological phases with symmetry,” Phys. Rev. B 105 no. 23, (2022) 235143, arXiv:2109.11039 [cond-mat.str-el].
- M. Cheng, P.-S. Hsin, and C.-M. Jian, “Gauging Lie group symmetry in (2+1)d topological phases,” arXiv:2205.15347 [cond-mat.str-el].
- T. D. Brennan, C. Cordova, and T. T. Dumitrescu, “Line Defect Quantum Numbers & Anomalies,” arXiv:2206.15401 [hep-th].
- D. Delmastro, J. Gomis, P.-S. Hsin, and Z. Komargodski, “Anomalies and Symmetry Fractionalization,” arXiv:2206.15118 [hep-th].
- T. Bartsch, M. Bullimore, and A. Grigoletto, “Higher representations for extended operators,” arXiv:2304.03789 [hep-th].
- L. Bhardwaj and S. Schafer-Nameki, “Generalized Charges, Part I: Invertible Symmetries and Higher Representations,” arXiv:2304.02660 [hep-th].
- D. T. Stephen, J. Garre-Rubio, A. Dua, and D. J. Williamson, “Subsystem symmetry enriched topological order in three dimensions,” Phys. Rev. Res. 2 no. 3, (2020) 033331, arXiv:2004.04181 [cond-mat.str-el].
- D. T. Stephen, A. Dua, J. Garre-Rubio, D. J. Williamson, and M. Hermele, “Fractionalization of subsystem symmetries in two dimensions,” Phys. Rev. B 106 (Aug, 2022) 085104. https://link.aps.org/doi/10.1103/PhysRevB.106.085104.
- Z. Nussinov and G. Ortiz, “Symmetry and topological order,” Proceedings of the National Academy of Sciences 106 (2006) 16944–16949. http://arxiv.org/abs/cond-mat/0605316%0Ahttp://dx.doi.org/10.1073/pnas.0803726105.
- Z. Nussinov and G. Ortiz, “A symmetry principle for topological quantum order,” Annals of Physics 324 (2009) 977–1057. http://www.sciencedirect.com/science/article/pii/S0003491608001711.
- R. Raussendorf, C. Okay, D. S. Wang, D. T. Stephen, and H. P. Nautrup, “Computationally universal phase of quantum matter,” Physical Review Letters 122 (2019) . http://arxiv.org/abs/1803.00095.
- Y. You, T. Devakul, F. J. Burnell, and S. L. Sondhi, “Subsystem symmetry protected topological order,” Phys. Rev. B 98 no. 3, (July, 2018) 035112, arXiv:1803.02369 [cond-mat.str-el].
- T. Devakul, D. J. Williamson, and Y. You, “Classification of subsystem symmetry-protected topological phases,” Phys. Rev. B 98 no. 23, (Dec., 2018) 235121, arXiv:1808.05300 [cond-mat.str-el].
- T. Devakul, Y. You, F. J. Burnell, and S. Sondhi, “Fractal symmetric phases of matter,” SciPost Physics 6 (2019) . http://arxiv.org/abs/1805.04097.
- H. Song, A. Prem, S. J. Huang, and M. A. Martin-Delgado, “Twisted fracton models in three dimensions,” Physical Review B 99 (2019) . http://arxiv.org/abs/1805.06899.
- Y. You, T. Devakul, F. J. Burnell, and S. L. Sondhi, “Symmetric fracton matter: Twisted and enriched,” Annals of Physics 416 (5, 2020) 168140.
- N. Tantivasadakarn and S. Vijay, “Searching for fracton orders via symmetry defect condensation,” Phys. Rev. B 101 (Apr, 2020) 165143. https://link.aps.org/doi/10.1103/PhysRevB.101.165143.
- W. Shirley, K. Slagle, and X. Chen, “Twisted foliated fracton phases,” Phys. Rev. B 102 (Sep, 2020) 115103. https://link.aps.org/doi/10.1103/PhysRevB.102.115103.
- K. Slagle, D. Aasen, and D. Williamson, “Foliated field theory and string-membrane-net condensation picture of fracton order,” SciPost Physics 6 no. 4, (Apr., 2019) 043, arXiv:1812.01613 [cond-mat.str-el].
- K. Slagle, “Foliated Quantum Field Theory of Fracton Order,” Phys. Rev. Lett. 126 no. 10, (2021) 101603, arXiv:2008.03852 [hep-th].
- P.-S. Hsin and K. Slagle, “Comments on foliated gauge theories and dualities in 3+1d,” SciPost Phys. 11 no. 2, (2021) 032, arXiv:2105.09363 [cond-mat.str-el].
- N. Seiberg and S.-H. Shao, “Exotic ℤNsubscriptℤ𝑁\mathbb{Z}_{N}blackboard_Z start_POSTSUBSCRIPT italic_N end_POSTSUBSCRIPT symmetries, duality, and fractons in 3+1-dimensional quantum field theory,” SciPost Phys. 10 no. 1, (2021) 003, arXiv:2004.06115 [cond-mat.str-el].
- N. Seiberg and S.-H. Shao, “Exotic Symmetries, Duality, and Fractons in 2+1-Dimensional Quantum Field Theory,” SciPost Phys. 10 no. 2, (2021) 027, arXiv:2003.10466 [cond-mat.str-el].
- O. Dubinkin, A. Rasmussen, and T. L. Hughes, “Higher-form Gauge Symmetries in Multipole Topological Phases,” Annals Phys. 422 (2020) 168297, arXiv:2007.05539 [cond-mat.str-el].
- K. Ohmori and S. Shimamura, “Foliated-exotic duality in fractonic BF theories,” SciPost Phys. 14 no. 6, (2023) 164, arXiv:2210.11001 [hep-th].
- B. C. Rayhaun and D. J. Williamson, “Higher-form subsystem symmetry breaking: Subdimensional criticality and fracton phase transitions,” SciPost Phys. 15 (2023) 017. https://scipost.org/10.21468/SciPostPhys.15.1.017.
- J. B. Kogut, “An introduction to lattice gauge theory and spin systems,” Rev. Mod. Phys. 51 (Oct, 1979) 659–713. https://link.aps.org/doi/10.1103/RevModPhys.51.659.
- M. Levin and Z.-C. Gu, “Braiding statistics approach to symmetry-protected topological phases,” Phys. Rev. B 86 (Sep, 2012) 115109. https://link.aps.org/doi/10.1103/PhysRevB.86.115109.
- W. Shirley, K. Slagle, and X. Chen, “Foliated fracton order from gauging subsystem symmetries,” SciPost Phys. 6 no. 4, (2019) 041, arXiv:1806.08679 [cond-mat.str-el].
- F. Benini, P.-S. Hsin, and N. Seiberg, “Comments on global symmetries, anomalies, and duality in (2 + 1)d,” JHEP 04 (2017) 135, arXiv:1702.07035 [cond-mat.str-el].
- F. J. Burnell, T. Devakul, P. Gorantla, H. T. Lam, and S. H. Shao, “Anomaly inflow for subsystem symmetries,” Physical Review B 106 (8, 2022) 085113. https://journals.aps.org/prb/abstract/10.1103/PhysRevB.106.085113.
- P.-S. Hsin, H. T. Lam, and N. Seiberg, “Comments on One-Form Global Symmetries and Their Gauging in 3d and 4d,” SciPost Phys. 6 no. 3, (2019) 039, arXiv:1812.04716 [hep-th].
- D. Gottesman, “Stabilizer codes and quantum error correction,” arXiv:quant-ph/9705052.
- V. Gheorghiu, “Standard form of qudit stabilizer groups,” Physics Letters A 378 no. 5, (2014) 505–509.
- L. Tsui and X.-G. Wen, “Lattice models that realize ℤnsubscriptℤ𝑛\mathbb{Z}_{n}blackboard_Z start_POSTSUBSCRIPT italic_n end_POSTSUBSCRIPT-1 symmetry-protected topological states for even n𝑛nitalic_n,” Phys. Rev. B 101 no. 3, (2020) 035101, arXiv:1908.02613 [cond-mat.str-el].
- M. A. Levin and X. G. Wen, “String-net condensation: A physical mechanism for topological phases,” Physical Review B - Condensed Matter and Materials Physics 71 (1, 2005) 045110. http://arxiv.org/abs/cond-mat/0404617. The OG.
- X. Chen, Z. X. Liu, and X. G. Wen, “Two-dimensional symmetry-protected topological orders and their protected gapless edge excitations,” Physical Review B - Condensed Matter and Materials Physics 84 (12, 2011) 235141. http://link.aps.org/doi/10.1103/PhysRevB.84.235141.
- T. D. Ellison, Y.-A. Chen, A. Dua, W. Shirley, N. Tantivasadakarn, and D. J. Williamson, “Pauli stabilizer models of twisted quantum doubles,” PRX Quantum 3 (Mar, 2022) 010353. https://link.aps.org/doi/10.1103/PRXQuantum.3.010353.
- D. J. Williamson and M. Cheng, “Designer non-abelian fractons from topological layers,” Physical Review B 107 (4, 2023) . http://arxiv.org/abs/2004.07251.
- G. W. Moore and N. Seiberg, “Classical and Quantum Conformal Field Theory,” Commun. Math. Phys. 123 (1989) 177.
- R. Dijkgraaf and E. Witten, “Topological Gauge Theories and Group Cohomology,” Commun. Math. Phys. 129 (1990) 393.
- S. Gelaki, D. Naidu, and D. Nikshych, “Centers of graded fusion categories,” Algebra and Number Theory 3 (2009) 959–990. https://msp.org/ant/2009/3-8/p05.xhtml.
- D. J. Williamson and Z. Wang, “Hamiltonian models for topological phases of matter in three spatial dimensions,” Annals of Physics 377 (2017) 311–344.
- S. X. Cui, “Four dimensional topological quantum field theories from g-crossed braided categories,” Quantum Topology 10 (9, 2019) 593–676. https://ems.press/journals/qt/articles/16453.
- C. Heinrich, F. Burnell, L. Fidkowski, and M. Levin, “Symmetry-enriched string nets: Exactly solvable models for set phases,” Physical Review B 94 (12, 2016) 235136. https://link.aps.org/doi/10.1103/PhysRevB.94.235136.
- M. Cheng, Z. C. Gu, S. Jiang, and Y. Qi, “Exactly solvable models for symmetry-enriched topological phases,” Physical Review B 96 (9, 2017) 115107. http://arxiv.org/abs/1606.08482%0Ahttp://dx.doi.org/10.1103/PhysRevB.96.115107.
- D. J. Williamson, N. Bultinck, and F. Verstraete, “Symmetry-enriched topological order in tensor networks: Defects, gauging and anyon condensation,”. http://arxiv.org/abs/1711.07982.
- P. Etingof, D. Nikshych, and V. Ostrik, “On fusion categories,” Annals of Mathematics 162 (2005) 581–642.
- M. MÜGER, “Modular categories,” Quantum Physics and Linguistics (1, 2013) 146–183. http://arxiv.org/abs/1201.6593.
- P. Etingof, D. Nikshych, V. Ostrik, and with an appendix by Ehud Meir, “Fusion categories and homotopy theory,” preprint, (2009) . http://arxiv.org/abs/0909.3140.
- K. Walker and Z. Wang, “(3+1)-tqfts and topological insulators,” 2011.
- S. Gelaki and D. Nikshych, “Nilpotent fusion categories,” Advances in Mathematics 217 (2, 2008) 1053–1071.
- T. D. Ellison, Y. A. Chen, A. Dua, W. Shirley, N. Tantivasadakarn, and D. J. Williamson, “Pauli topological subsystem codes from abelian anyon theories,” Quantum 7 (10, 2023) 1137. https://quantum-journal.org/papers/q-2023-10-12-1137/.
- J. Haah, L. Fidkowski, and M. B. Hastings, “Nontrivial quantum cellular automata in higher dimensions,” Communications in Mathematical Physics 398 (2, 2023) 469–540. https://link.springer.com/article/10.1007/s00220-022-04528-1.
- J. Haah, “Clifford quantum cellular automata: Trivial group in 2d and witt group in 3d,” Journal of Mathematical Physics 62 (7, 2019) . http://arxiv.org/abs/1907.02075http://dx.doi.org/10.1063/5.0022185.
- W. Shirley, Y.-A. Chen, A. Dua, T. D. Ellison, N. Tantivasadakarn, and D. J. Williamson, “Three-dimensional quantum cellular automata from chiral semion surface topological order and beyond,” PRX Quantum 3 (2, 2022) . http://arxiv.org/abs/2202.05442http://dx.doi.org/10.1103/PRXQuantum.3.030326.
- T. Devakul, W. Shirley, and J. Wang, “Strong planar subsystem symmetry-protected topological phases and their dual fracton orders,” Physical Review Research 2 (10, 2020) . https://arxiv.org/abs/1910.01630v2http://arxiv.org/abs/1910.01630%****␣main.bbl␣Line␣475␣****http://dx.doi.org/10.1103/PhysRevResearch.2.012059.
- J. F. S. Miguel, A. Dua, and D. J. Williamson, “Bifurcating subsystem symmetric entanglement renormalization in two dimensions,” Physical Review B 103 (1, 2021) 035148. https://journals.aps.org/prb/abstract/10.1103/PhysRevB.103.035148.
- D. Aasen, D. Bulmash, A. Prem, K. Slagle, and D. J. Williamson, “Topological defect networks for fractons of all types,” Physical Review Research 2 (2, 2020) . http://arxiv.org/abs/2002.05166.
- Z. Song, A. Dua, W. Shirley, and D. J. Williamson, “Topological defect network representations of fracton stabilizer codes,” PRX Quantum 4 (1, 2023) 010304. https://journals.aps.org/prxquantum/abstract/10.1103/PRXQuantum.4.010304.
- D. J. Williamson and T. Devakul, “Type-II fractons from coupled spin chains and layers,” Physical Review B 103 (7, 2021) . http://arxiv.org/abs/2007.07894.
- L. Zou and J. Haah, “Spurious long-range entanglement and replica correlation length,” Physical Review B 94 (8, 2016) 75151. https://link.aps.org/doi/10.1103/PhysRevB.94.075151.
- D. J. Williamson, A. Dua, and M. Cheng, “Spurious topological entanglement entropy from subsystem symmetries,” Physical Review Letters 122 (8, 2019) . http://arxiv.org/abs/1808.05221.
- D. T. Stephen, H. Dreyer, M. Iqbal, and N. Schuch, “Detecting subsystem symmetry protected topological order via entanglement entropy,” Physical Review B 100 (9, 2019) 115112. https://journals.aps.org/prb/abstract/10.1103/PhysRevB.100.115112.
- I. H. Kim, M. Levin, T.-C. Lin, D. Ranard, and B. Shi, “Universal lower bound on topological entanglement entropy,” Phys. Rev. Lett. 131 (Oct, 2023) 166601. https://link.aps.org/doi/10.1103/PhysRevLett.131.166601.
- T. Devakul, “Classifying local fractal subsystem symmetry-protected topological phases,” Physical Review B 99 (12, 2019) . https://arxiv.org/pdf/1812.02721.pdf.
- T. Devakul and D. J. Williamson, “Fractalizing quantum codes,” Quantum 5 (9, 2021) . http://arxiv.org/abs/2009.01252.
- D. Bulmash and T. Iadecola, “Braiding and gapped boundaries in fracton topological phases,” Physical Review B 99 (9, 2019) . http://arxiv.org/abs/1810.00012.
- A. T. Schmitz, S. J. Huang, and A. Prem, “Entanglement spectra of stabilizer codes: A window into gapped quantum phases of matter,” Physical Review B 99 (5, 2019) 205109. https://journals.aps.org/prb/abstract/10.1103/PhysRevB.99.205109.
- C. T. Aitchison, D. Bulmash, A. Dua, A. C. Doherty, and D. J. Williamson, “No strings attached: Boundaries and defects in the cubic code,”. https://arxiv.org/abs/2308.00138v1.
- J. Kaidi, K. Ohmori, and Y. Zheng, “Symmetry TFTs for Non-invertible Defects,” Commun. Math. Phys. 404 no. 2, (2023) 1021–1124, arXiv:2209.11062 [hep-th].
- C. Zhang and C. Córdova, “Anomalies of (1+1)D11𝐷(1+1)D( 1 + 1 ) italic_D categorical symmetries,” arXiv:2304.01262 [cond-mat.str-el].
- C. Cordova, P.-S. Hsin, and C. Zhang, “Anomalies of Non-Invertible Symmetries in (3+1)d,” arXiv:2308.11706 [hep-th].
- M. Barkeshli, Y.-A. Chen, S.-J. Huang, R. Kobayashi, N. Tantivasadakarn, and G. Zhu, “Codimension-2 defects and higher symmetries in (3+1)D topological phases,” SciPost Phys. 14 no. 4, (2023) 065, arXiv:2208.07367 [cond-mat.str-el].
- M. Barkeshli, Y.-A. Chen, P.-S. Hsin, and R. Kobayashi, “Higher-group symmetry in finite gauge theory and stabilizer codes,” arXiv:2211.11764 [cond-mat.str-el].
- M. Barkeshli, P.-S. Hsin, and R. Kobayashi, “Higher-group symmetry of (3+1)D fermionic ℤ2subscriptℤ2\mathbb{Z}_{2}blackboard_Z start_POSTSUBSCRIPT 2 end_POSTSUBSCRIPT gauge theory: logical CCZ, CS, and T gates from higher symmetry,” arXiv:2311.05674 [cond-mat.str-el].
- G. Zhu, S. Sikander, E. Portnoy, A. W. Cross, and B. J. Brown, “Non-Clifford and parallelizable fault-tolerant logical gates on constant and almost-constant rate homological quantum LDPC codes via higher symmetries,” arXiv:2310.16982 [quant-ph].
- T. Devakul and D. J. Williamson, “Universal quantum computation using fractal symmetry-protected cluster phases,” Physical Review A 98 (8, 2018) 022332. https://link.aps.org/doi/10.1103/PhysRevA.98.022332http://arxiv.org/abs/1806.04663.
- D. T. Stephen, H. P. Nautrup, J. Bermejo-Vega, J. Eisert, and R. Raussendorf, “Subsystem symmetries, quantum cellular automata, and computational phases of quantum matter,” Quantum 3 (2019) 142. http://arxiv.org/abs/1806.08780.
- A. K. Daniel, R. N. Alexander, and A. Miyake, “Computational universality of symmetry-protected topologically ordered cluster phases on 2D Archimedean lattices,” Quantum 4 (Feb., 2020) 228. https://doi.org/10.22331/q-2020-02-10-228.
Paper Prompts
Sign up for free to create and run prompts on this paper using GPT-5.
Top Community Prompts
Collections
Sign up for free to add this paper to one or more collections.