Papers
Topics
Authors
Recent
2000 character limit reached

Smart Resource Allocation at mmWave/THz Frequencies with Cooperative Rate-Splitting (2403.09022v2)

Published 14 Mar 2024 in cs.IT, eess.SP, and math.IT

Abstract: In this paper, we propose algorithms to minimize the energy consumption in millimeter wave/terahertz multi-user downlink communication systems. To ensure coverage in blockage-vulnerable high frequency systems, we consider cooperative rate-splitting (CRS) and transmission over multiple time blocks, where via CRS, multiple users cooperate to assist a blocked user. Moreover, we show that transmission over multiple time blocks provides benefits through smart resource allocation. We first propose a communication framework named improved distinct extraction-based CRS (iDeCRS) that utilizes the benefits of rate-splitting. With our transmission framework, we derive a performance benchmark assuming genie channel state information (CSI), i.e., the channels of the present and future time blocks are known, denoted as GENIE. Using the results from GENIE, we derive a novel efficiency constrained optimization (ECO) algorithm assuming instantaneous CSI. In addition, a simple but effective even data transmission (EDT) algorithm that promotes steady transmission along the time blocks is proposed. Simulation results show that ECO and EDT have satisfactory performances compared to GENIE. The results also show that ECO outperforms EDT when many users are cooperating, and vise versa.

Definition Search Book Streamline Icon: https://streamlinehq.com
References (35)
  1. F. Boccardi, R. W. Heath, A. Lozano, T. L. Marzetta, and P. Popovski, “Five Disruptive Technology Directions for 5G,” IEEE Communications Magazine, vol. 52, no. 2, pp. 74–80, Feb. 2014.
  2. M. Z. Chowdhury, M. Shahjalal, S. Ahmed, and Y. M. Jang, “6G Wireless Communication Systems: Applications, Requirements, Technologies, Challenges, and Research Directions,” IEEE Open Journal of the Communications Society, vol. 1, pp. 957–975, Jul. 2020.
  3. T. S. Rappaport, S. Sun, R. Mayzus, H. Zhao, Y. Azar, K. Wang, G. N. Wong, J. K. Schulz, M. Samimi, and F. Gutierrez, “Millimeter Wave Mobile Communications for 5G Cellular: It Will Work!” IEEE Access, vol. 1, pp. 335–349, May 2013.
  4. Z. Chen, X. Ma, B. Zhang, Y. Zhang, Z. Niu, N. Kuang, W. Chen, L. Li, and S. Li, “A Survey on Terahertz Communications,” China Communications, vol. 16, no. 2, pp. 1–35, Mar. 2019.
  5. K. M. S. Huq, S. A. Busari, J. Rodriguez, V. Frascolla, W. Bazzi, and D. C. Sicker, “Terahertz-Enabled Wireless System for Beyond-5G Ultra-Fast Networks: A Brief Survey,” IEEE Network, vol. 33, no. 4, pp. 89–95, Jul. 2019.
  6. S. Koenig, D. Lopez-Diaz, J. Antes, F. Boes, R. Henneberger, A. Leuther, A. Tessmann, R. Schmogrow, D. Hillerkuss, R. Palmer, T. Zwick, C. Koos, W. Freude, O. Ambacher, J. Leuthold, and I. Kallfass, “Wireless Sub-THz Communication System with High Data Rate,” Nature Photonics, vol. 7, no. 12, pp. 977–981, Dec. 2013.
  7. C. Chaccour, M. N. Soorki, W. Saad, M. Bennis, P. Popovski, and M. Debbah, “Seven Defining Features of Terahertz (THz) Wireless Systems: A Fellowship of Communication and Sensing,” IEEE Communications Surveys & Tutorials, vol. 24, no. 2, pp. 967–993, Jan. 2022.
  8. H. Hamada, T. Fujimura, I. Abdo, K. Okada, H.-J. Song, H. Sugiyama, H. Matsuzaki, and H. Nosaka, “300-GHz. 100-Gb/s InP-HEMT Wireless Transceiver Using a 300-GHz Fundamental Mixer,” in 2018 IEEE/MTT-S International Microwave Symposium - IMS, Aug. 2018, pp. 1480–1483.
  9. P. Sen and J. M. Jornet, “Experimental Demonstration of Ultra-broadband Wireless Communications at True Terahertz Frequencies,” in 2019 IEEE 20th International Workshop on Signal Processing Advances in Wireless Communications (SPAWC), Aug. 2019, pp. 1–5.
  10. A. Nosratinia, T. Hunter, and A. Hedayat, “Cooperative Communication in Wireless Networks,” IEEE Communications Magazine, vol. 42, no. 10, pp. 74–80, Oct. 2004.
  11. G. Kramer, M. Gastpar, and P. Gupta, “Cooperative Strategies and Capacity Theorems for Relay Networks,” IEEE Transactions on Information Theory, vol. 51, no. 9, pp. 3037–3063, Sep. 2005.
  12. J. Choi, D. J. Love, and T. P. Bidigare, “Coded Distributed Diversity: A Novel Distributed Reception Technique for Wireless Communication Systems,” IEEE Transactions on Signal Processing, vol. 63, Mar. 2015.
  13. Y. Mao, O. Dizdar, B. Clerckx, R. Schober, P. Popovski, and H. V. Poor, “Rate-Splitting Multiple Access: Fundamentals, Survey, and Future Research Trends,” IEEE Communications Surveys & Tutorials, vol. 24, no. 4, Jul. 2022.
  14. Q. Spencer, A. Swindlehurst, and M. Haardt, “Zero-forcing Methods for Downlink Spatial Multiplexing in Multiuser MIMO Channels,” IEEE Transactions on Signal Processing, vol. 52, no. 2, pp. 461–471, Jan. 2004.
  15. L. Dai, B. Wang, Y. Yuan, S. Han, I. Chih-lin, and Z. Wang, “Non-orthogonal Multiple Access for 5G: Solutions, Challenges, Opportunities, and Future Research Trends,” IEEE Communications Magazine, vol. 53, no. 9, pp. 74–81, Sep. 2015.
  16. Y. Mao, B. Clerckx, and V. O. Li, “Rate-splitting Multiple Access for Downlink Communication Systems: Bridging, Generalizing, and Outperforming SDMA and NOMA,” EURASIP Journal on Wireless Communications and Networking, vol. 133, no. 1, May 2018.
  17. M. Dai, B. Clerckx, D. Gesbert, and G. Caire, “A Rate Splitting Strategy for Massive MIMO With Imperfect CSIT,” IEEE Transactions on Wireless Communications, vol. 15, no. 7, pp. 4611–4624, Jul. 2016.
  18. A. Mishra, Y. Mao, C. K. Thomas, L. Sanguinetti, and B. Clerckx, “Mitigating Intra-Cell Pilot Contamination in Massive MIMO: A Rate Splitting Approach,” IEEE Transactions on Wireless Communications, vol. 22, no. 5, pp. 3472–3487, May 2023.
  19. O. Dizdar, Y. Mao, and B. Clerckx, “Rate-Splitting Multiple Access to Mitigate the Curse of Mobility in (Massive) MIMO Networks,” IEEE Transactions on Communications, vol. 69, no. 10, pp. 6765–6780, Oct. 2021.
  20. A. Mishra, Y. Mao, L. Sanguinetti, and B. Clerckx, “Rate-Splitting Assisted Massive Machine-Type Communications in Cell-Free Massive MIMO,” IEEE Communications Letters, vol. 26, no. 6, pp. 1358–1362, Jun. 2022.
  21. M. Dai and B. Clerckx, “Multiuser Millimeter Wave Beamforming Strategies With Quantized and Statistical CSIT,” IEEE Transactions on Wireless Communications, vol. 16, no. 11, pp. 7025–7038, Nov. 2017.
  22. Z. Li, S. Yang, and T. Clessienne, “A General Rate Splitting Scheme for Hybrid Precoding in mmWave Systems,” in ICC 2019 - 2019 IEEE International Conference on Communications (ICC), May 2019, pp. 1–6.
  23. H. Li, Y. Mao, O. Dizdar, and B. Clerckx, “Rate-Splitting Multiple Access for 6G—Part III: Interplay With Reconfigurable Intelligent Surfaces,” IEEE Communications Letters, vol. 26, no. 10, pp. 2242–2246, Oct. 2022.
  24. H. Cho, B. Ko, B. Clerckx, and J. Choi, “Coverage Increase at THz Frequencies: A Cooperative Rate-Splitting Approach,” IEEE Transactions on Wireless Communications, Early Access, 2023.
  25. Y. Mao, B. Clerckx, J. Zhang, V. O. K. Li, and M. A. Arafah, “Max-Min Fairness of K-User Cooperative Rate-Splitting in MISO Broadcast Channel With User Relaying,” IEEE Transactions on Wireless Communications, vol. 19, no. 10, pp. 6362–6376, Oct. 2020.
  26. J. Zhang, B. Clerckx, J. Ge, and Y. Mao, “Cooperative Rate Splitting for MISO Broadcast Channel With User Relaying, and Performance Benefits Over Cooperative NOMA,” IEEE Signal Processing Letters, vol. 26, no. 11, pp. 1678–1682, Nov. 2019.
  27. J. Zhang and J. Ge, “Cooperative Rate-Splitting for Downlink Multiuser MISO Systems With Partial CSIT,” IEEE Transactions on Communications, vol. 69, no. 11, pp. 7504–7519, Nov. 2021.
  28. B. Clerckx, H. Joudeh, C. Hao, M. Dai, and B. Rassouli, “Rate Splitting for MIMO Wireless Networks: a Promising PHY-layer Strategy for LTE Evolution,” IEEE Communications Magazine, vol. 54, no. 5, pp. 98–105, May 2016.
  29. H. Joudeh and B. Clerckx, “Sum-Rate Maximization for Linearly Precoded Downlink Multiuser MISO Systems With Partial CSIT: A Rate-Splitting Approach,” IEEE Transactions on Communications, vol. 64, no. 11, pp. 4847–4861, Nov. 2016.
  30. Y. Sun, P. Babu, and D. P. Palomar, “Majorization-Minimization Algorithms in Signal Processing, Communications, and Machine Learning,” IEEE Transactions on Signal Processing, vol. 65, no. 3, pp. 794–816, Aug. 2017.
  31. M. Grant and S. Boyd, “CVX: Matlab software for disciplined convex programming, version 2.1,” http://cvxr.com/cvx, Mar. 2014.
  32. E. Björnson, M. Bengtsson, and B. Ottersten, “Optimal Multiuser Transmit Beamforming: A Difficult Problem with a Simple Solution Structure [Lecture Notes],” IEEE Signal Processing Magazine, vol. 31, no. 4, pp. 142–148, Jun. 2014.
  33. O. Tervo, L.-N. Tran, and M. Juntti, “Optimal Energy-Efficient Transmit Beamforming for Multi-User MISO Downlink,” IEEE Transactions on Signal Processing, vol. 63, no. 20, pp. 5574–5588, Jul. 2015.
  34. M. Abu Alsheikh, D. T. Hoang, D. Niyato, H.-P. Tan, and S. Lin, “Markov Decision Processes With Applications in Wireless Sensor Networks: A Survey,” IEEE Communications Surveys & Tutorials, vol. 17, no. 3, pp. 1239–1267, Apr. 2015.
  35. A. Hjorungnes and D. Gesbert, “Complex-Valued Matrix Differentiation: Techniques and Key Results,” IEEE Transactions on Signal Processing, vol. 55, no. 6, pp. 2740–2746, Jun. 2007.
Citations (1)

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

Authors (2)

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

X Twitter Logo Streamline Icon: https://streamlinehq.com

Tweets

This paper has been mentioned in 2 tweets and received 0 likes.

Upgrade to Pro to view all of the tweets about this paper: