Papers
Topics
Authors
Recent
Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 79 tok/s
Gemini 2.5 Pro 57 tok/s Pro
GPT-5 Medium 30 tok/s Pro
GPT-5 High 39 tok/s Pro
GPT-4o 109 tok/s Pro
Kimi K2 197 tok/s Pro
GPT OSS 120B 453 tok/s Pro
Claude Sonnet 4.5 38 tok/s Pro
2000 character limit reached

Quantum Many-Body Scarring in $2+1$D Gauge Theories with Dynamical Matter (2403.08858v2)

Published 13 Mar 2024 in cond-mat.quant-gas, cond-mat.str-el, hep-lat, and quant-ph

Abstract: Quantum many-body scarring (QMBS) has emerged as an intriguing paradigm of weak ergodicity breaking in nonintegrable quantum many-body models, particularly lattice gauge theories (LGTs) in $1+1$ spacetime dimensions. However, an open question is whether QMBS exists in higher-dimensional LGTs with dynamical matter. Given that nonergodic dynamics in $d{=}1$ spatial dimension tend to vanish in $d{>}1$, it is important to probe this question. Using matrix product state techniques for both finite and infinite systems, we show that QMBS occurs in the $2{+}1$D $\mathrm{U}(1)$ quantum link model (QLM), as evidenced in persistent coherent oscillations in local observables, a marked slowdown in the growth of the bipartite entanglement entropy, and revivals in the fidelity. Interestingly, we see that QMBS is more robust when the matter degrees of freedom are bosonic rather than fermionic. Our results further shed light on the intimate connection between gauge invariance and QMBS, and highlight the persistence of scarring in higher spatial dimensions. Our findings can be tested in near-term analog and digital quantum simulators, and we demonstrate their accessibility on a recently proposed cold-atom analog quantum simulator.

Definition Search Book Streamline Icon: https://streamlinehq.com
References (72)
  1. Hannes Bernien, Sylvain Schwartz, Alexander Keesling, Harry Levine, Ahmed Omran, Hannes Pichler, Soonwon Choi, Alexander S. Zibrov, Manuel Endres, Markus Greiner, Vladan Vuletić,  and Mikhail D. Lukin, “Probing many-body dynamics on a 51-atom quantum simulator,” Nature 551, 579–584 (2017).
  2. Sanjay Moudgalya, Stephan Rachel, B. Andrei Bernevig,  and Nicolas Regnault, “Exact excited states of nonintegrable models,” Phys. Rev. B 98, 235155 (2018a).
  3. Hongzheng Zhao, Joseph Vovrosh, Florian Mintert,  and Johannes Knolle, “Quantum many-body scars in optical lattices,” Phys. Rev. Lett. 124, 160604 (2020).
  4. Paul Niklas Jepsen, Yoo Kyung ‘Eunice’ Lee, Hanzhen Lin, Ivana Dimitrova, Yair Margalit, Wen Wei Ho,  and Wolfgang Ketterle, “Long-lived phantom helix states in heisenberg quantum magnets,” Nature Physics 18, 899–904 (2022).
  5. Maksym Serbyn, Dmitry A. Abanin,  and Zlatko Papić, “Quantum many-body scars and weak breaking of ergodicity,” Nature Physics 17, 675–685 (2021).
  6. Sanjay Moudgalya, B Andrei Bernevig,  and Nicolas Regnault, “Quantum many-body scars and hilbert space fragmentation: a review of exact results,” Reports on Progress in Physics 85, 086501 (2022).
  7. Anushya Chandran, Thomas Iadecola, Vedika Khemani,  and Roderich Moessner, “Quantum many-body scars: A quasiparticle perspective,” Annual Review of Condensed Matter Physics 14, 443–469 (2023), https://doi.org/10.1146/annurev-conmatphys-031620-101617 .
  8. C. J. Turner, A. A. Michailidis, D. A. Abanin, M. Serbyn,  and Z. Papić, “Weak ergodicity breaking from quantum many-body scars,” Nature Physics 14, 745–749 (2018).
  9. Michael Schecter and Thomas Iadecola, “Weak ergodicity breaking and quantum many-body scars in spin-1 x⁢y𝑥𝑦xyitalic_x italic_y magnets,” Phys. Rev. Lett. 123, 147201 (2019).
  10. Sanjay Moudgalya, Nicolas Regnault,  and B. Andrei Bernevig, “Entanglement of exact excited states of Affleck-Kennedy-Lieb-Tasaki models: Exact results, many-body scars, and violation of the strong eigenstate thermalization hypothesis,” Phys. Rev. B 98, 235156 (2018b).
  11. Cheng-Ju Lin and Olexei I. Motrunich, “Exact quantum many-body scar states in the Rydberg-blockaded atom chain,” Phys. Rev. Lett. 122, 173401 (2019).
  12. Wen Wei Ho, Soonwon Choi, Hannes Pichler,  and Mikhail D. Lukin, “Periodic orbits, entanglement, and quantum many-body scars in constrained models: Matrix product state approach,” Phys. Rev. Lett. 122, 040603 (2019).
  13. J. M. Deutsch, “Quantum statistical mechanics in a closed system,” Phys. Rev. A 43, 2046–2049 (1991).
  14. Mark Srednicki, “Chaos and quantum thermalization,” Phys. Rev. E 50, 888–901 (1994).
  15. Joshua M Deutsch, “Eigenstate thermalization hypothesis,” Reports on Progress in Physics 81, 082001 (2018).
  16. Daniel K. Mark, Cheng-Ju Lin,  and Olexei I. Motrunich, “Unified structure for exact towers of scar states in the Affleck-Kennedy-Lieb-Tasaki and other models,” Phys. Rev. B 101, 195131 (2020).
  17. Sanjay Moudgalya, Nicolas Regnault,  and B. Andrei Bernevig, “η𝜂\etaitalic_η-pairing in Hubbard models: From spectrum generating algebras to quantum many-body scars,” Phys. Rev. B 102, 085140 (2020).
  18. Nicholas O’Dea, Fiona Burnell, Anushya Chandran,  and Vedika Khemani, “From tunnels to towers: Quantum scars from Lie algebras and q𝑞qitalic_q-deformed Lie algebras,” Phys. Rev. Research 2, 043305 (2020).
  19. K. Pakrouski, P. N. Pallegar, F. K. Popov,  and I. R. Klebanov, “Many-body scars as a group invariant sector of Hilbert space,” Phys. Rev. Lett. 125, 230602 (2020).
  20. Naoto Shiraishi and Takashi Mori, “Systematic construction of counterexamples to the eigenstate thermalization hypothesis,” Phys. Rev. Lett. 119, 030601 (2017).
  21. D. Bluvstein, A. Omran, H. Levine, A. Keesling, G. Semeghini, S. Ebadi, T. T. Wang, A. A. Michailidis, N. Maskara, W. W. Ho, S. Choi, M. Serbyn, M. Greiner, V. Vuletić,  and M. D. Lukin, “Controlling quantum many-body dynamics in driven Rydberg atom arrays,” Science 371, 1355–1359 (2021).
  22. Dolev Bluvstein, Harry Levine, Giulia Semeghini, Tout T. Wang, Sepehr Ebadi, Marcin Kalinowski, Alexander Keesling, Nishad Maskara, Hannes Pichler, Markus Greiner, Vladan Vuletić,  and Mikhail D. Lukin, “A quantum processor based on coherent transport of entangled atom arrays,” Nature 604, 451–456 (2022).
  23. Guo-Xian Su, Hui Sun, Ana Hudomal, Jean-Yves Desaules, Zhao-Yu Zhou, Bing Yang, Jad C. Halimeh, Zhen-Sheng Yuan, Zlatko Papić,  and Jian-Wei Pan, “Observation of many-body scarring in a bose-hubbard quantum simulator,” Phys. Rev. Res. 5, 023010 (2023).
  24. Pengfei Zhang, Hang Dong, Yu Gao, Liangtian Zhao, Jie Hao, Jean-Yves Desaules, Qiujiang Guo, Jiachen Chen, Jinfeng Deng, Bobo Liu, Wenhui Ren, Yunyan Yao, Xu Zhang, Shibo Xu, Ke Wang, Feitong Jin, Xuhao Zhu, Bing Zhang, Hekang Li, Chao Song, Zhen Wang, Fangli Liu, Zlatko Papić, Lei Ying, H. Wang,  and Ying-Cheng Lai, “Many-body hilbert space scarring on a superconducting processor,” Nature Physics 19, 120–125 (2023).
  25. Hang Dong, Jean-Yves Desaules, Yu Gao, Ning Wang, Zexian Guo, Jiachen Chen, Yiren Zou, Feitong Jin, Xuhao Zhu, Pengfei Zhang, Hekang Li, Zhen Wang, Qiujiang Guo, Junxiang Zhang, Lei Ying,  and Zlatko Papić, “Disorder-tunable entanglement at infinite temperature,” Science Advances 9, eadj3822 (2023), https://www.science.org/doi/pdf/10.1126/sciadv.adj3822 .
  26. Federica M. Surace, Paolo P. Mazza, Giuliano Giudici, Alessio Lerose, Andrea Gambassi,  and Marcello Dalmonte, “Lattice gauge theories and string dynamics in Rydberg atom quantum simulators,” Phys. Rev. X 10, 021041 (2020).
  27. Thomas Iadecola and Michael Schecter, “Quantum many-body scar states with emergent kinetic constraints and finite-entanglement revivals,” Phys. Rev. B 101, 024306 (2020).
  28. Adith Sai Aramthottil, Utso Bhattacharya, Daniel González-Cuadra, Maciej Lewenstein, Luca Barbiero,  and Jakub Zakrzewski, “Scar states in deconfined 𝕫2subscript𝕫2{\mathbb{z}}_{2}roman_𝕫 start_POSTSUBSCRIPT 2 end_POSTSUBSCRIPT lattice gauge theories,” Phys. Rev. B 106, L041101 (2022).
  29. Saptarshi Biswas, Debasish Banerjee,  and Arnab Sen, “Scars from protected zero modes and beyond in U⁢(1)𝑈1U(1)italic_U ( 1 ) quantum link and quantum dimer models,” SciPost Phys. 12, 148 (2022).
  30. Jean-Yves Desaules, Debasish Banerjee, Ana Hudomal, Zlatko Papić, Arnab Sen,  and Jad C. Halimeh, “Weak ergodicity breaking in the schwinger model,” Phys. Rev. B 107, L201105 (2023a).
  31. Jean-Yves Desaules, Ana Hudomal, Debasish Banerjee, Arnab Sen, Zlatko Papić,  and Jad C. Halimeh, “Prominent quantum many-body scars in a truncated schwinger model,” Phys. Rev. B 107, 205112 (2023b).
  32. Jad C. Halimeh, Luca Barbiero, Philipp Hauke, Fabian Grusdt,  and Annabelle Bohrdt, “Robust quantum many-body scars in lattice gauge theories,” Quantum 7, 1004 (2023a).
  33. S. Weinberg, The Quantum Theory of Fields, Vol. 2: Modern Applications (Cambridge University Press, 1995).
  34. M. E. Peskin and D. V. Schroeder, An Introduction To Quantum Field Theory (CRC Press, 2018).
  35. S Chandrasekharan and U.-J Wiese, “Quantum link models: A discrete approach to gauge theories,” Nuclear Physics B 492, 455 – 471 (1997).
  36. U.-J. Wiese, “Ultracold quantum gases and lattice systems: quantum simulation of lattice gauge theories,” Annalen der Physik 525, 777–796 (2013).
  37. Bing Yang, Hui Sun, Robert Ott, Han-Yi Wang, Torsten V. Zache, Jad C. Halimeh, Zhen-Sheng Yuan, Philipp Hauke,  and Jian-Wei Pan, “Observation of gauge invariance in a 71-site Bose–Hubbard quantum simulator,” Nature 587, 392–396 (2020).
  38. Zhao-Yu Zhou, Guo-Xian Su, Jad C. Halimeh, Robert Ott, Hui Sun, Philipp Hauke, Bing Yang, Zhen-Sheng Yuan, Jürgen Berges,  and Jian-Wei Pan, “Thermalization dynamics of a gauge theory on a quantum simulator,” Science 377, 311–314 (2022).
  39. Sidney Coleman, “More about the massive schwinger model,” Annals of Physics 101, 239 – 267 (1976).
  40. M. Dalmonte and S. Montangero, “Lattice gauge theory simulations in the quantum information era,” Contemporary Physics 57, 388–412 (2016).
  41. Mari Carmen Bañuls, Rainer Blatt, Jacopo Catani, Alessio Celi, Juan Ignacio Cirac, Marcello Dalmonte, Leonardo Fallani, Karl Jansen, Maciej Lewenstein, Simone Montangero, Christine A. Muschik, Benni Reznik, Enrique Rico, Luca Tagliacozzo, Karel Van Acoleyen, Frank Verstraete, Uwe-Jens Wiese, Matthew Wingate, Jakub Zakrzewski,  and Peter Zoller, “Simulating lattice gauge theories within quantum technologies,” The European Physical Journal D 74, 165 (2020).
  42. Erez Zohar, J Ignacio Cirac,  and Benni Reznik, “Quantum simulations of lattice gauge theories using ultracold atoms in optical lattices,” Reports on Progress in Physics 79, 014401 (2015).
  43. Yuri Alexeev, Dave Bacon, Kenneth R. Brown, Robert Calderbank, Lincoln D. Carr, Frederic T. Chong, Brian DeMarco, Dirk Englund, Edward Farhi, Bill Fefferman, Alexey V. Gorshkov, Andrew Houck, Jungsang Kim, Shelby Kimmel, Michael Lange, Seth Lloyd, Mikhail D. Lukin, Dmitri Maslov, Peter Maunz, Christopher Monroe, John Preskill, Martin Roetteler, Martin J. Savage,  and Jeff Thompson, “Quantum computer systems for scientific discovery,” PRX Quantum 2, 017001 (2021).
  44. Monika Aidelsburger, Luca Barbiero, Alejandro Bermudez, Titas Chanda, Alexandre Dauphin, Daniel González-Cuadra, Przemysław R. Grzybowski, Simon Hands, Fred Jendrzejewski, Johannes Jünemann, Gediminas Juzeliūnas, Valentin Kasper, Angelo Piga, Shi-Ju Ran, Matteo Rizzi, Germán Sierra, Luca Tagliacozzo, Emanuele Tirrito, Torsten V. Zache, Jakub Zakrzewski, Erez Zohar,  and Maciej Lewenstein, “Cold atoms meet lattice gauge theory,” Philosophical Transactions of the Royal Society A: Mathematical, Physical and Engineering Sciences 380, 20210064 (2022).
  45. Erez Zohar, “Quantum simulation of lattice gauge theories in more than one space dimension—requirements, challenges and methods,” Philosophical Transactions of the Royal Society of London Series A 380, 20210069 (2022), arXiv:2106.04609 [quant-ph] .
  46. Natalie Klco, Alessandro Roggero,  and Martin J. Savage, “Standard model physics and the digital quantum revolution: Thoughts about the interface,” arXiv preprint  (2021), arXiv:2107.04769 [quant-ph] .
  47. Christian W. Bauer, Zohreh Davoudi, A. Baha Balantekin, Tanmoy Bhattacharya, Marcela Carena, Wibe A. de Jong, Patrick Draper, Aida El-Khadra, Nate Gemelke, Masanori Hanada, Dmitri Kharzeev, Henry Lamm, Ying-Ying Li, Junyu Liu, Mikhail Lukin, Yannick Meurice, Christopher Monroe, Benjamin Nachman, Guido Pagano, John Preskill, Enrico Rinaldi, Alessandro Roggero, David I. Santiago, Martin J. Savage, Irfan Siddiqi, George Siopsis, David Van Zanten, Nathan Wiebe, Yukari Yamauchi, Kübra Yeter-Aydeniz,  and Silvia Zorzetti, “Quantum simulation for high-energy physics,” PRX Quantum 4, 027001 (2023).
  48. Alberto Di Meglio, Karl Jansen, Ivano Tavernelli, Constantia Alexandrou, Srinivasan Arunachalam, Christian W. Bauer, Kerstin Borras, Stefano Carrazza, Arianna Crippa, Vincent Croft, Roland de Putter, Andrea Delgado, Vedran Dunjko, Daniel J. Egger, Elias Fernandez-Combarro, Elina Fuchs, Lena Funcke, Daniel Gonzalez-Cuadra, Michele Grossi, Jad C. Halimeh, Zoe Holmes, Stefan Kuhn, Denis Lacroix, Randy Lewis, Donatella Lucchesi, Miriam Lucio Martinez, Federico Meloni, Antonio Mezzacapo, Simone Montangero, Lento Nagano, Voica Radescu, Enrique Rico Ortega, Alessandro Roggero, Julian Schuhmacher, Joao Seixas, Pietro Silvi, Panagiotis Spentzouris, Francesco Tacchino, Kristan Temme, Koji Terashi, Jordi Tura, Cenk Tuysuz, Sofia Vallecorsa, Uwe-Jens Wiese, Shinjae Yoo,  and Jinglei Zhang, “Quantum computing for high-energy physics: State of the art and challenges. summary of the qc4hep working group,”   (2023), arXiv:2307.03236 [quant-ph] .
  49. Jad C. Halimeh, Monika Aidelsburger, Fabian Grusdt, Philipp Hauke,  and Bing Yang, “Cold-atom quantum simulators of gauge theories,”   (2023b), arXiv:2310.12201 [cond-mat.quant-gas] .
  50. Yanting Cheng and Hui Zhai, “Emergent gauge theory in rydberg atom arrays,”   (2024), arXiv:2401.07708 [cond-mat.quant-gas] .
  51. D.M. Basko, I.L. Aleiner,  and B.L. Altshuler, “Metal–insulator transition in a weakly interacting many-electron system with localized single-particle states,” Annals of Physics 321, 1126–1205 (2006).
  52. I. V. Gornyi, A. D. Mirlin,  and D. G. Polyakov, “Interacting electrons in disordered wires: Anderson localization and low-t𝑡titalic_t transport,” Phys. Rev. Lett. 95, 206603 (2005).
  53. Rahul Nandkishore and David A. Huse, “Many-body localization and thermalization in quantum statistical mechanics,” Annual Review of Condensed Matter Physics 6, 15–38 (2015).
  54. Dmitry A. Abanin, Ehud Altman, Immanuel Bloch,  and Maksym Serbyn, “Colloquium: Many-body localization, thermalization, and entanglement,” Rev. Mod. Phys. 91, 021001 (2019).
  55. A. A. Michailidis, C. J. Turner, Z. Papić, D. A. Abanin,  and M. Serbyn, “Stabilizing two-dimensional quantum scars by deformation and synchronization,” Phys. Rev. Res. 2, 022065 (2020).
  56. Cheng-Ju Lin, Vladimir Calvera,  and Timothy H. Hsieh, “Quantum many-body scar states in two-dimensional rydberg atom arrays,” Phys. Rev. B 101, 220304 (2020).
  57. Debasish Banerjee and Arnab Sen, “Quantum scars from zero modes in an abelian lattice gauge theory on ladders,” Phys. Rev. Lett. 126, 220601 (2021).
  58. Indrajit Sau, Paolo Stornati, Debasish Banerjee,  and Arnab Sen, “Sublattice scars and beyond in two-dimensional u⁢(1)𝑢1u(1)italic_u ( 1 ) quantum link lattice gauge theories,” Phys. Rev. D 109, 034519 (2024).
  59. Ana Hudomal, Jean-Yves Desaules, Bhaskar Mukherjee, Guo-Xian Su, Jad C. Halimeh,  and Zlatko Papić, “Driving quantum many-body scars in the pxp model,” Phys. Rev. B 106, 104302 (2022).
  60. Aiden Daniel, Andrew Hallam, Jean-Yves Desaules, Ana Hudomal, Guo-Xian Su, Jad C. Halimeh,  and Zlatko Papić, “Bridging quantum criticality via many-body scarring,” Phys. Rev. B 107, 235108 (2023).
  61. Ulrich Schollwöck, “The density-matrix renormalization group in the age of matrix product states,” Annals of Physics 326, 96–192 (2011), january 2011 Special Issue.
  62. Sebastian Paeckel, Thomas Köhler, Andreas Swoboda, Salvatore R. Manmana, Ulrich Schollwöck,  and Claudius Hubig, “Time-evolution methods for matrix-product states,” Annals of Physics 411, 167998 (2019).
  63. Ian P. McCulloch and J. Osborne, “Matrix product toolkit,” https://github.com/mptoolkit.
  64. See Supplemental Material for supporting numerical results.
  65. Jesse Osborne, Ian P. McCulloch, Bing Yang, Philipp Hauke,  and Jad C. Halimeh, “Large-scale 2+1212+12 + 1D U⁢(1)U1\mathrm{U}(1)roman_U ( 1 ) gauge theory with dynamical matter in a cold-atom quantum simulator,”   (2022), arXiv:2211.01380 [cond-mat.quant-gas] .
  66. Tomohiro Hashizume, Ian P. McCulloch,  and Jad C. Halimeh, “Dynamical phase transitions in the two-dimensional transverse-field ising model,” Phys. Rev. Res. 4, 013250 (2022a).
  67. Tomohiro Hashizume, Jad C. Halimeh, Philipp Hauke,  and Debasish Banerjee, “Ground-state phase diagram of quantum link electrodynamics in (2+1)21(2+1)( 2 + 1 )-d,” SciPost Phys. 13, 017 (2022b).
  68. Erez Zohar, J. Ignacio Cirac,  and Benni Reznik, “Simulating (2+1212+12 + 1)-dimensional lattice qed with dynamical matter using ultracold atoms,” Phys. Rev. Lett. 110, 055302 (2013).
  69. R. Ott, T. V. Zache, F. Jendrzejewski,  and J. Berges, “Scalable cold-atom quantum simulator for two-dimensional qed,” Phys. Rev. Lett. 127, 130504 (2021).
  70. Pierpaolo Fontana, Joao C. Pinto Barros,  and Andrea Trombettoni, “Quantum simulator of link models using spinor dipolar ultracold atoms,” Phys. Rev. A 107, 043312 (2023).
  71. Federica Maria Surace, Pierre Fromholz, Nelson Darkwah Oppong, Marcello Dalmonte,  and Monika Aidelsburger, “a⁢b⁢i⁢n⁢i⁢t⁢i⁢o𝑎𝑏𝑖𝑛𝑖𝑡𝑖𝑜ab\,initioitalic_a italic_b italic_i italic_n italic_i italic_t italic_i italic_o derivation of lattice gauge theory dynamics for cold gases in optical lattices,”   (2023), arXiv:2301.03474 [cond-mat.quant-gas] .
  72. T. Budde, M. Krstic Marinkovic, J. C. Pinto Barros, “Quantum Many-Body Scars for Arbitrary Spin in 2+1D Abelian Gauge Theories,” (2024), to appear in the same arXiv listing”.
Citations (2)

Summary

We haven't generated a summary for this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

X Twitter Logo Streamline Icon: https://streamlinehq.com

Tweets

This paper has been mentioned in 2 posts and received 0 likes.