Papers
Topics
Authors
Recent
2000 character limit reached

Scalarization of isolated black holes in scalar Gauss-Bonnet theory in the fixing-the-equations approach (2403.08705v1)

Published 13 Mar 2024 in gr-qc

Abstract: One of the most promising avenues to perform numerical evolutions in theories beyond General Relativity is the fixing-the-equations approach, a proposal in which new driver'' equations are added to the evolution equations in a way that allows for stable numerical evolutions. In this direction, we extend the numerical relativity code SpECTRE to evolve afixed'' version of scalar Gauss-Bonnet theory in the decoupling limit, a phenomenologically interesting theory that allows for hairy black hole solutions in vacuum. We focus on isolated black hole systems both with and without linear and angular momentum, and propose a new driver equation to improve the recovery of such stationary solutions. We demonstrate the effectiveness of the latter by numerically evolving black holes that undergo spontaneous scalarization using different driver equations. Finally, we evaluate the accuracy of the obtained solutions by comparing with the original unaltered theory.

Definition Search Book Streamline Icon: https://streamlinehq.com
References (65)
  1. J. Aasi et al. (LIGO Scientific), Advanced LIGO, Class. Quant. Grav. 32, 074001 (2015), arXiv:1411.4547 [gr-qc] .
  2. F. Acernese et al. (VIRGO), Advanced Virgo: a second-generation interferometric gravitational wave detector, Class. Quant. Grav. 32, 024001 (2015), arXiv:1408.3978 [gr-qc] .
  3. T. Akutsu et al. (KAGRA), Overview of KAGRA: Detector design and construction history, PTEP 2021, 05A101 (2021), arXiv:2005.05574 [physics.ins-det] .
  4. P. Amaro-Seoane et al. (LISA), Laser Interferometer Space Antenna,   (2017), arXiv:1702.00786 [astro-ph.IM] .
  5. M. Punturo et al., The Einstein Telescope: A third-generation gravitational wave observatory, Class. Quant. Grav. 27, 194002 (2010).
  6. D. Reitze et al., Cosmic Explorer: The U.S. Contribution to Gravitational-Wave Astronomy beyond LIGO, Bull. Am. Astron. Soc. 51, 035 (2019), arXiv:1907.04833 [astro-ph.IM] .
  7. C. M. Will, Theory and Experiment in Gravitational Physics (Cambridge University Press, 2018).
  8. B. P. Abbott et al. (LIGO Scientific, Virgo), Tests of General Relativity with the Binary Black Hole Signals from the LIGO-Virgo Catalog GWTC-1, Phys. Rev. D100, 104036 (2019), arXiv:1903.04467 [gr-qc] .
  9. R. Abbott et al. (LIGO Scientific, Virgo), Tests of general relativity with binary black holes from the second LIGO-Virgo gravitational-wave transient catalog, Phys. Rev. D 103, 122002 (2021a), arXiv:2010.14529 [gr-qc] .
  10. P. Kocherlakota et al. (Event Horizon Telescope), Constraints on black-hole charges with the 2017 EHT observations of M87*, Phys. Rev. D 103, 104047 (2021), arXiv:2105.09343 [gr-qc] .
  11. K. Akiyama et al. (Event Horizon Telescope), First Sagittarius A* Event Horizon Telescope Results. VI. Testing the Black Hole Metric, Astrophys. J. Lett. 930, L17 (2022), arXiv:2311.09484 [astro-ph.HE] .
  12. M. Crisostomi and K. Koyama, Self-accelerating universe in scalar-tensor theories after GW170817, Phys. Rev. D97, 084004 (2018), arXiv:1712.06556 [astro-ph.CO] .
  13. D. Langlois and K. Noui, Degenerate higher derivative theories beyond Horndeski: evading the Ostrogradski instability, JCAP 02, 034, arXiv:1510.06930 [gr-qc] .
  14. M. Crisostomi, K. Koyama, and G. Tasinato, Extended Scalar-Tensor Theories of Gravity, JCAP 1604, 044, arXiv:1602.03119 [hep-th] .
  15. G. W. Horndeski, Second-order scalar-tensor field equations in a four-dimensional space, Int. J. Theor. Phys. 10, 363 (1974).
  16. S. Weinberg, Effective Field Theory for Inflation, Phys. Rev. D 77, 123541 (2008), arXiv:0804.4291 [hep-th] .
  17. B. Abbott et al. (LIGO Scientific, Virgo), GW170817: Observation of Gravitational Waves from a Binary Neutron Star Inspiral, Phys. Rev. Lett. 119, 161101 (2017b), arXiv:1710.05832 [gr-qc] .
  18. P. Creminelli and F. Vernizzi, Dark Energy after GW170817 and GRB170817A, Phys. Rev. Lett. 119, 251302 (2017), arXiv:1710.05877 [astro-ph.CO] .
  19. J. M. Ezquiaga and M. Zumalacárregui, Dark Energy After GW170817: Dead Ends and the Road Ahead, Phys. Rev. Lett. 119, 251304 (2017), arXiv:1710.05901 [astro-ph.CO] .
  20. J. Sakstein and B. Jain, Implications of the Neutron Star Merger GW170817 for Cosmological Scalar-Tensor Theories, Phys. Rev. Lett. 119, 251303 (2017), arXiv:1710.05893 [astro-ph.CO] .
  21. S. Ossokine et al., Multipolar Effective-One-Body Waveforms for Precessing Binary Black Holes: Construction and Validation, Phys. Rev. D 102, 044055 (2020), arXiv:2004.09442 [gr-qc] .
  22. G. Pratten et al., Computationally efficient models for the dominant and subdominant harmonic modes of precessing binary black holes, Phys. Rev. D 103, 104056 (2021), arXiv:2004.06503 [gr-qc] .
  23. T. W. Baumgarte and S. L. Shapiro, Numerical Relativity: Solving Einstein’s Equations on the Computer (Cambridge University Press, 2010).
  24. J. Hadamard, Sur les problemes aux derivees partielles et leur signification physique, Princeton university bulletin , 49 (1902).
  25. W. E. East and J. L. Ripley, Dynamics of Spontaneous Black Hole Scalarization and Mergers in Einstein-Scalar-Gauss-Bonnet Gravity, Phys. Rev. Lett. 127, 101102 (2021a), arXiv:2105.08571 [gr-qc] .
  26. L. Bernard, L. Lehner, and R. Luna, Challenges to global solutions in Horndeski’s theory, Phys. Rev. D 100, 024011 (2019), arXiv:1904.12866 [gr-qc] .
  27. J. L. Ripley and F. Pretorius, Gravitational collapse in Einstein dilaton-Gauss–Bonnet gravity, Class. Quant. Grav. 36, 134001 (2019), arXiv:1903.07543 [gr-qc] .
  28. J. L. Ripley and F. Pretorius, Scalarized Black Hole dynamics in Einstein dilaton Gauss-Bonnet Gravity, Phys. Rev. D 101, 044015 (2020a), arXiv:1911.11027 [gr-qc] .
  29. J. L. Ripley and F. Pretorius, Dynamics of a ℤ2subscriptℤ2\mathbb{Z}_{2}blackboard_Z start_POSTSUBSCRIPT 2 end_POSTSUBSCRIPT symmetric EdGB gravity in spherical symmetry, Class. Quant. Grav. 37, 155003 (2020b), arXiv:2005.05417 [gr-qc] .
  30. A. H. K. R, J. L. Ripley, and N. Yunes, Where and why does Einstein-scalar-Gauss-Bonnet theory break down?, Phys. Rev. D 107, 044044 (2023), arXiv:2211.08477 [gr-qc] .
  31. J. L. Ripley, Numerical relativity for Horndeski gravity,   (2022), arXiv:2207.13074 [gr-qc] .
  32. M. Okounkova, Stability of Rotating Black Holes in Einstein Dilaton Gauss-Bonnet Gravity, Phys. Rev. D 100, 124054 (2019), arXiv:1909.12251 [gr-qc] .
  33. M. Okounkova, Numerical relativity simulation of GW150914 in Einstein dilaton Gauss-Bonnet gravity, Phys. Rev. D 102, 084046 (2020), arXiv:2001.03571 [gr-qc] .
  34. P. Figueras and T. França, Gravitational Collapse in Cubic Horndeski Theories, Class. Quant. Grav. 37, 225009 (2020), arXiv:2006.09414 [gr-qc] .
  35. P. Figueras and T. França, Black Hole Binaries in Cubic Horndeski Theories,   (2021), arXiv:2112.15529 [gr-qc] .
  36. A. Held and H. Lim, Nonlinear dynamics of quadratic gravity in spherical symmetry, Phys. Rev. D 104, 084075 (2021), arXiv:2104.04010 [gr-qc] .
  37. A. Held and H. Lim, Nonlinear evolution of quadratic gravity in 3+1 dimensions, Phys. Rev. D 108, 104025 (2023), arXiv:2306.04725 [gr-qc] .
  38. A. D. Kovács and H. S. Reall, Well-Posed Formulation of Scalar-Tensor Effective Field Theory, Phys. Rev. Lett. 124, 221101 (2020a), arXiv:2003.04327 [gr-qc] .
  39. A. D. Kovács and H. S. Reall, Well-posed formulation of Lovelock and Horndeski theories, Phys. Rev. D 101, 124003 (2020b), arXiv:2003.08398 [gr-qc] .
  40. W. E. East and J. L. Ripley, Evolution of Einstein-scalar-Gauss-Bonnet gravity using a modified harmonic formulation, Phys. Rev. D 103, 044040 (2021b), arXiv:2011.03547 [gr-qc] .
  41. M. Corman, J. L. Ripley, and W. E. East, Nonlinear studies of binary black hole mergers in Einstein-scalar-Gauss-Bonnet gravity, Phys. Rev. D 107, 024014 (2023), arXiv:2210.09235 [gr-qc] .
  42. L. Aresté Saló, K. Clough, and P. Figueras, Well-Posedness of the Four-Derivative Scalar-Tensor Theory of Gravity in Singularity Avoiding Coordinates, Phys. Rev. Lett. 129, 261104 (2022), arXiv:2208.14470 [gr-qc] .
  43. L. Aresté Saló, K. Clough, and P. Figueras, Puncture gauge formulation for Einstein-Gauss-Bonnet gravity and four-derivative scalar-tensor theories in d+1 spacetime dimensions, Phys. Rev. D 108, 084018 (2023), arXiv:2306.14966 [gr-qc] .
  44. J. Cayuso, N. Ortiz, and L. Lehner, Fixing extensions to general relativity in the nonlinear regime, Phys. Rev. D 96, 084043 (2017), arXiv:1706.07421 [gr-qc] .
  45. G. Allwright and L. Lehner, Towards the nonlinear regime in extensions to GR: assessing possible options, Class. Quant. Grav. 36, 084001 (2019), arXiv:1808.07897 [gr-qc] .
  46. R. Cayuso and L. Lehner, Nonlinear, noniterative treatment of EFT-motivated gravity, Phys. Rev. D 102, 084008 (2020), arXiv:2005.13720 [gr-qc] .
  47. A. Coates and F. M. Ramazanoğlu, Treatments and placebos for the pathologies of effective field theories, Phys. Rev. D 108, L101501 (2023), arXiv:2307.07743 [gr-qc] .
  48. T. P. Sotiriou and S.-Y. Zhou, Black hole hair in generalized scalar-tensor gravity, Phys. Rev. Lett. 112, 251102 (2014a), arXiv:1312.3622 [gr-qc] .
  49. T. P. Sotiriou and S.-Y. Zhou, Black hole hair in generalized scalar-tensor gravity: An explicit example, Phys. Rev. D 90, 124063 (2014b), arXiv:1408.1698 [gr-qc] .
  50. R. P. Kerr, Gravitational field of a spinning mass as an example of algebraically special metrics, Phys. Rev. Lett. 11, 237 (1963).
  51. L. Hui and A. Nicolis, No-Hair Theorem for the Galileon, Phys. Rev. Lett. 110, 241104 (2013), arXiv:1202.1296 [hep-th] .
  52. L. Capuano, L. Santoni, and E. Barausse, Black hole hairs in scalar-tensor gravity and the lack thereof, Phys. Rev. D 108, 064058 (2023), arXiv:2304.12750 [gr-qc] .
  53. M. Herrero-Valea, The shape of scalar Gauss-Bonnet gravity, JHEP 03, 075, arXiv:2106.08344 [gr-qc] .
  54. T. Damour and G. Esposito-Farese, Tensor - scalar gravity and binary pulsar experiments, Phys. Rev. D 54, 1474 (1996), arXiv:gr-qc/9602056 .
  55. D. D. Doneva and S. S. Yazadjiev, New Gauss-Bonnet Black Holes with Curvature-Induced Scalarization in Extended Scalar-Tensor Theories, Phys. Rev. Lett. 120, 131103 (2018), arXiv:1711.01187 [gr-qc] .
  56. G. Antoniou, A. Bakopoulos, and P. Kanti, Evasion of No-Hair Theorems and Novel Black-Hole Solutions in Gauss-Bonnet Theories, Phys. Rev. Lett. 120, 131102 (2018), arXiv:1711.03390 [hep-th] .
  57. M. Minamitsuji and T. Ikeda, Scalarized black holes in the presence of the coupling to Gauss-Bonnet gravity, Phys. Rev. D 99, 044017 (2019), arXiv:1812.03551 [gr-qc] .
  58. N. A. Wittek et al., Worldtube excision method for intermediate-mass-ratio inspirals: scalar-field model in 3+1 dimensions,   (2023), arXiv:2304.05329 [gr-qc] .
  59. W. Throwe and S. A. Teukolsky, A high-order, conservative integrator with local time-stepping (2020), arXiv:1811.02499 [math.NA] .
  60. A. Bayliss and E. Turkel, Radiation boundary conditions for wave-like equations, Communications on Pure and applied Mathematics 33, 707 (1980).
  61. SXS Collaboration, in preparation.
  62. L. Lindblom and B. Szilagyi, An Improved Gauge Driver for the GH Einstein System, Phys. Rev. D 80, 084019 (2009), arXiv:0904.4873 [gr-qc] .
  63. M. W. Choptuik and F. Pretorius, Ultra Relativistic Particle Collisions, Phys. Rev. Lett. 104, 111101 (2010), arXiv:0908.1780 [gr-qc] .
  64. B. Szilagyi, L. Lindblom, and M. A. Scheel, Simulations of Binary Black Hole Mergers Using Spectral Methods, Phys. Rev. D 80, 124010 (2009), arXiv:0909.3557 [gr-qc] .
  65. O. Rinne, L. Lindblom, and M. A. Scheel, Testing outer boundary treatments for the Einstein equations, Class. Quant. Grav. 24, 4053 (2007), arXiv:0704.0782 [gr-qc] .
Citations (5)

Summary

We haven't generated a summary for this paper yet.

Slide Deck Streamline Icon: https://streamlinehq.com

Whiteboard

Dice Question Streamline Icon: https://streamlinehq.com

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

X Twitter Logo Streamline Icon: https://streamlinehq.com

Tweets

Sign up for free to view the 1 tweet with 1 like about this paper.