Papers
Topics
Authors
Recent
2000 character limit reached

Exploiting Structural Consistency of Chest Anatomy for Unsupervised Anomaly Detection in Radiography Images (2403.08689v1)

Published 13 Mar 2024 in eess.IV and cs.CV

Abstract: Radiography imaging protocols focus on particular body regions, therefore producing images of great similarity and yielding recurrent anatomical structures across patients. Exploiting this structured information could potentially ease the detection of anomalies from radiography images. To this end, we propose a Simple Space-Aware Memory Matrix for In-painting and Detecting anomalies from radiography images (abbreviated as SimSID). We formulate anomaly detection as an image reconstruction task, consisting of a space-aware memory matrix and an in-painting block in the feature space. During the training, SimSID can taxonomize the ingrained anatomical structures into recurrent visual patterns, and in the inference, it can identify anomalies (unseen/modified visual patterns) from the test image. Our SimSID surpasses the state of the arts in unsupervised anomaly detection by +8.0%, +5.0%, and +9.9% AUC scores on ZhangLab, COVIDx, and CheXpert benchmark datasets, respectively. Code: https://github.com/MrGiovanni/SimSID

Definition Search Book Streamline Icon: https://streamlinehq.com
References (119)
  1. T. Zhao, K. Cao, J. Yao, I. Nogues, L. Lu, L. Huang, J. Xiao, Z. Yin, and L. Zhang, “3d graph anatomy geometry-integrated network for pancreatic mass segmentation, diagnosis, and quantitative patient management,” in Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, 2021, pp. 13 743–13 752.
  2. F. Haghighi, M. R. H. Taher, Z. Zhou, M. B. Gotway, and J. Liang, “Transferable visual words: Exploiting the semantics of anatomical patterns for self-supervised learning,” IEEE Transactions on Medical Imaging, 2021.
  3. F. Haghighi, M. R. Hosseinzadeh Taher, Z. Zhou, M. B. Gotway, and J. Liang, “Learning semantics-enriched representation via self-discovery, self-classification, and self-restoration,” in International Conference on Medical Image Computing and Computer-Assisted Intervention.   Springer, 2020, pp. 137–147.
  4. Z. Zhou, M. B. Gotway, and J. Liang, “Interpreting medical images,” in Intelligent Systems in Medicine and Health.   Springer, 2022, pp. 343–371.
  5. Z. Zhou, “Towards annotation-efficient deep learning for computer-aided diagnosis,” Ph.D. dissertation, Arizona State University, 2021.
  6. L. M. Smoger, C. K. Fitzpatrick, C. W. Clary, A. J. Cyr, L. P. Maletsky, P. J. Rullkoetter, and P. J. Laz, “Statistical modeling to characterize relationships between knee anatomy and kinematics,” Journal of Orthopaedic Research®, vol. 33, no. 11, pp. 1620–1630, 2015.
  7. E. M. A. Anas, A. Rasoulian, A. Seitel, K. Darras, D. Wilson, P. S. John, D. Pichora, P. Mousavi, R. Rohling, and P. Abolmaesumi, “Automatic segmentation of wrist bones in ct using a statistical wrist shape +++ pose model,” IEEE transactions on medical imaging, vol. 35, no. 8, pp. 1789–1801, 2016.
  8. Z. Mirikharaji and G. Hamarneh, “Star shape prior in fully convolutional networks for skin lesion segmentation,” in International Conference on Medical Image Computing and Computer-Assisted Intervention.   Springer, 2018, pp. 737–745.
  9. Z. Zhou, J. Shin, R. Feng, R. T. Hurst, C. B. Kendall, and J. Liang, “Integrating active learning and transfer learning for carotid intima-media thickness video interpretation,” Journal of Digital Imaging, vol. 32, no. 2, pp. 290–299, 2019.
  10. Y. Lu, W. Li, K. Zheng, Y. Wang, A. P. Harrison, C. Lin, S. Wang, J. Xiao, L. Lu, C.-F. Kuo et al., “Learning to segment anatomical structures accurately from one exemplar,” in International Conference on Medical Image Computing and Computer-Assisted Intervention.   Springer, 2020, pp. 678–688.
  11. R. Feng, Z. Zhou, M. B. Gotway, and J. Liang, “Parts2whole: Self-supervised contrastive learning via reconstruction,” in Domain Adaptation and Representation Transfer, and Distributed and Collaborative Learning.   Springer, 2020, pp. 85–95.
  12. Z. Zhou, V. Sodha, M. M. R. Siddiquee, R. Feng, N. Tajbakhsh, M. B. Gotway, and J. Liang, “Models genesis: Generic autodidactic models for 3d medical image analysis,” in International Conference on Medical Image Computing and Computer-Assisted Intervention.   Springer, 2019, pp. 384–393.
  13. C. Baur, S. Denner, B. Wiestler, N. Navab, and S. Albarqouni, “Autoencoders for unsupervised anomaly segmentation in brain mr images: a comparative study,” Medical Image Analysis, vol. 69, p. 101952, 2021.
  14. A. P. Brady, “Error and discrepancy in radiology: inevitable or avoidable?” Insights into imaging, vol. 8, pp. 171–182, 2017.
  15. A. Zimek and E. Schubert, “Outlier detection,” in Encyclopedia of Database Systems.   Springer, 2017.
  16. S. Omar, A. Ngadi, and H. H. Jebur, “Machine learning techniques for anomaly detection: an overview,” International Journal of Computer Applications, vol. 79, no. 2, 2013.
  17. B. Schölkopf, R. C. Williamson, A. J. Smola, J. Shawe-Taylor, J. C. Platt et al., “Support vector method for novelty detection.” in NIPS, vol. 12.   Citeseer, 1999, pp. 582–588.
  18. B. Zhao, L. Fei-Fei, and E. P. Xing, “Online detection of unusual events in videos via dynamic sparse coding,” in CVPR 2011.   IEEE, 2011, pp. 3313–3320.
  19. Y. Cong, J. Yuan, and J. Liu, “Sparse reconstruction cost for abnormal event detection,” in CVPR 2011.   IEEE, 2011, pp. 3449–3456.
  20. W. Li, V. Mahadevan, and N. Vasconcelos, “Anomaly detection and localization in crowded scenes,” IEEE transactions on pattern analysis and machine intelligence, vol. 36, no. 1, pp. 18–32, 2013.
  21. L. Ruff, R. Vandermeulen, N. Goernitz, L. Deecke, S. A. Siddiqui, A. Binder, E. Müller, and M. Kloft, “Deep one-class classification,” in International conference on machine learning.   PMLR, 2018, pp. 4393–4402.
  22. B. Zong, Q. Song, M. R. Min, W. Cheng, C. Lumezanu, D. Cho, and H. Chen, “Deep autoencoding gaussian mixture model for unsupervised anomaly detection,” in International conference on learning representations, 2018.
  23. D. Sidibe, S. Sankar, G. Lemaitre, M. Rastgoo, J. Massich, C. Y. Cheung, G. S. Tan, D. Milea, E. Lamoureux, T. Y. Wong et al., “An anomaly detection approach for the identification of dme patients using spectral domain optical coherence tomography images,” Computer methods and programs in biomedicine, vol. 139, pp. 109–117, 2017.
  24. D. Hendrycks and K. Gimpel, “A baseline for detecting misclassified and out-of-distribution examples in neural networks,” International Conference on Learning Representations, 2016.
  25. K. Lee, H. Lee, K. Lee, and J. Shin, “Training confidence-calibrated classifiers for detecting out-of-distribution samples,” International Conference on Learning Representations, 2017.
  26. S. Liang, Y. Li, and R. Srikant, “Enhancing the reliability of out-of-distribution image detection in neural networks,” International Conference on Learning Representations, 2017.
  27. K. Lee, K. Lee, H. Lee, and J. Shin, “A simple unified framework for detecting out-of-distribution samples and adversarial attacks,” Advances in neural information processing systems, vol. 31, 2018.
  28. T. DeVries and G. W. Taylor, “Learning confidence for out-of-distribution detection in neural networks,” arXiv preprint arXiv:1802.04865, 2018.
  29. D. Hendrycks, M. Mazeika, and T. Dietterich, “Deep anomaly detection with outlier exposure,” International Conference on Learning Representations, 2018.
  30. X. Chen and E. Konukoglu, “Unsupervised detection of lesions in brain mri using constrained adversarial auto-encoders,” Medical Imaging with Deep Learning, 2018.
  31. M. M. R. Siddiquee, Z. Zhou, N. Tajbakhsh, R. Feng, M. B. Gotway, Y. Bengio, and J. Liang, “Learning fixed points in generative adversarial networks: From image-to-image translation to disease detection and localization,” in IEEE International Conference on Computer Vision, 2019, pp. 191–200.
  32. Y. Tang, Y. Tang, Y. Zhu, J. Xiao, and R. M. Summers, “A disentangled generative model for disease decomposition in chest x-rays via normal image synthesis,” Medical Image Analysis, vol. 67, p. 101839, 2021.
  33. Z. Zhou, V. Sodha, J. Pang, M. B. Gotway, and J. Liang, “Models genesis,” Medical Image Analysis, vol. 67, p. 101840, 2021.
  34. V. Zavrtanik, M. Kristan, and D. Skočaj, “Draem-a discriminatively trained reconstruction embedding for surface anomaly detection,” in Proceedings of the IEEE/CVF International Conference on Computer Vision, 2021, pp. 8330–8339.
  35. N.-C. Ristea, N. Madan, R. T. Ionescu, K. Nasrollahi, F. S. Khan, T. B. Moeslund, and M. Shah, “Self-supervised predictive convolutional attentive block for anomaly detection,” arXiv preprint arXiv:2111.09099, 2021.
  36. D. P. Kingma and M. Welling, “Auto-encoding variational bayes,” arXiv preprint arXiv:1312.6114, 2013.
  37. S. Akcay, A. Atapour-Abarghouei, and T. P. Breckon, “Ganomaly: Semi-supervised anomaly detection via adversarial training,” in Asian conference on computer vision.   Springer, 2018, pp. 622–637.
  38. T. Schlegl, P. Seeböck, S. M. Waldstein, G. Langs, and U. Schmidt-Erfurth, “f-anogan: Fast unsupervised anomaly detection with generative adversarial networks,” Medical Image Analysis, 2019.
  39. T. Reiss, N. Cohen, L. Bergman, and Y. Hoshen, “Panda: Adapting pretrained features for anomaly detection and segmentation,” in Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, 2021, pp. 2806–2814.
  40. B. Nguyen, A. Feldman, S. Bethapudi, A. Jennings, and C. G. Willcocks, “Unsupervised region-based anomaly detection in brain mri with adversarial image inpainting,” in 2021 IEEE 18th International Symposium on Biomedical Imaging (ISBI).   IEEE, 2021, pp. 1127–1131.
  41. V. Zavrtanik, M. Kristan, and D. Skočaj, “Reconstruction by inpainting for visual anomaly detection,” Pattern Recognition, vol. 112, p. 107706, 2021.
  42. M. Haselmann, D. P. Gruber, and P. Tabatabai, “Anomaly detection using deep learning based image completion,” in 2018 17th IEEE International Conference on Machine Learning and Applications (ICMLA).   IEEE, 2018, pp. 1237–1242.
  43. J. Sato, Y. Suzuki, T. Wataya, D. Nishigaki, K. Kita, K. Yamagata, N. Tomiyama, and S. Kido, “Anatomy-aware self-supervised learning for anomaly detection in chest radiographs,” arXiv preprint arXiv:2205.04282, 2022.
  44. M. Hasan, J. Choi, J. Neumann, A. K. Roy-Chowdhury, and L. S. Davis, “Learning temporal regularity in video sequences,” in Proceedings of the IEEE conference on computer vision and pattern recognition, 2016, pp. 733–742.
  45. Y. Lu, K. M. Kumar, S. shahabeddin Nabavi, and Y. Wang, “Future frame prediction using convolutional vrnn for anomaly detection,” in 2019 16th IEEE International Conference on Advanced Video and Signal Based Surveillance (AVSS).   IEEE, 2019, pp. 1–8.
  46. Z. Liu, Y. Nie, C. Long, Q. Zhang, and G. Li, “A hybrid video anomaly detection framework via memory-augmented flow reconstruction and flow-guided frame prediction,” in Proceedings of the IEEE/CVF International Conference on Computer Vision, 2021, pp. 13 588–13 597.
  47. A. Acsintoae, A. Florescu, M.-I. Georgescu, T. Mare, P. Sumedrea, R. T. Ionescu, F. S. Khan, and M. Shah, “Ubnormal: New benchmark for supervised open-set video anomaly detection,” arXiv preprint arXiv:2111.08644, 2021.
  48. P. Bergmann, M. Fauser, D. Sattlegger, and C. Steger, “Uninformed students: Student-teacher anomaly detection with discriminative latent embeddings,” in Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, 2020, pp. 4183–4192.
  49. M. Salehi, N. Sadjadi, S. Baselizadeh, M. H. Rohban, and H. R. Rabiee, “Multiresolution knowledge distillation for anomaly detection,” in Proceedings of the IEEE/CVF conference on computer vision and pattern recognition, 2021, pp. 14 902–14 912.
  50. G. Pang, C. Aggarwal, C. Shen, and N. Sebe, “Editorial deep learning for anomaly detection,” IEEE Transactions on Neural Networks and Learning Systems, vol. 33, no. 6, pp. 2282–2286, 2022.
  51. Q. Hu, Y. Chen, J. Xiao, S. Sun, J. Chen, A. L. Yuille, and Z. Zhou, “Label-free liver tumor segmentation,” in IEEE/CVF Conference on Computer Vision and Pattern Recognition, 2023, pp. 7422–7432.
  52. B. Li, Y.-C. Chou, S. Sun, H. Qiao, A. Yuille, and Z. Zhou, “Early detection and localization of pancreatic cancer by label-free tumor synthesis,” MICCAI Workshop on Big Task Small Data, 1001-AI, 2023.
  53. J. Liu, Y. Zhang, J.-N. Chen, J. Xiao, Y. Lu, B. A Landman, Y. Yuan, A. Yuille, Y. Tang, and Z. Zhou, “Clip-driven universal model for organ segmentation and tumor detection,” in Proceedings of the IEEE/CVF International Conference on Computer Vision, 2023, pp. 21 152–21 164.
  54. Y. Zhang, X. Li, H. Chen, A. L. Yuille, Y. Liu, and Z. Zhou, “Continual learning for abdominal multi-organ and tumor segmentation,” in International Conference on Medical Image Computing and Computer-Assisted Intervention.   Springer, 2023, pp. 35–45.
  55. M. A. Zuluaga, D. Hush, E. J. Delgado Leyton, M. H. Hoyos, and M. Orkisz, “Learning from only positive and unlabeled data to detect lesions in vascular ct images,” in International conference on medical image computing and computer-assisted intervention.   Springer, 2011, pp. 9–16.
  56. M. A. Khan, T. Akram, Y.-D. Zhang, and M. Sharif, “Attributes based skin lesion detection and recognition: A mask rcnn and transfer learning-based deep learning framework,” Pattern Recognition Letters, vol. 143, pp. 58–66, 2021.
  57. S. Bakas, M. Reyes, A. Jakab, S. Bauer, M. Rempfler, A. Crimi, R. T. Shinohara, C. Berger, S. M. Ha, M. Rozycki et al., “Identifying the best machine learning algorithms for brain tumor segmentation, progression assessment, and overall survival prediction in the brats challenge,” arXiv preprint arXiv:1811.02629, 2018.
  58. Z. Zhou, M. M. R. Siddiquee, N. Tajbakhsh, and J. Liang, “Unet++: Redesigning skip connections to exploit multiscale features in image segmentation,” IEEE Transactions on Medical Imaging, vol. 39, no. 6, pp. 1856–1867, 2019.
  59. S. Zheng, J. Guo, X. Cui, R. N. Veldhuis, M. Oudkerk, and P. M. Van Ooijen, “Automatic pulmonary nodule detection in ct scans using convolutional neural networks based on maximum intensity projection,” IEEE transactions on medical imaging, vol. 39, no. 3, pp. 797–805, 2019.
  60. N. U. Islam, S. Gehlot, Z. Zhou, M. B. Gotway, and J. Liang, “Seeking an optimal approach for computer-aided pulmonary embolism detection,” in International Workshop on Machine Learning in Medical Imaging.   Springer, 2021, pp. 692–702.
  61. T. Fernando, H. Gammulle, S. Denman, S. Sridharan, and C. Fookes, “Deep learning for medical anomaly detection–a survey,” arXiv preprint arXiv:2012.02364, 2020.
  62. M. E. Tschuchnig and M. Gadermayr, “Anomaly detection in medical imaging–a mini review,” arXiv preprint arXiv:2108.11986, 2021.
  63. M. Heer, J. Postels, X. Chen, E. Konukoglu, and S. Albarqouni, “The ood blind spot of unsupervised anomaly detection,” in Medical Imaging with Deep Learning.   PMLR, 2021, pp. 286–300.
  64. J. Xiao, Y. Bai, A. Yuille, and Z. Zhou, “Delving into masked autoencoders for multi-label thorax disease classification,” IEEE Winter Conference on Applications of Computer Vision, 2022.
  65. T. Schlegl, P. Seeböck, S. M. Waldstein, U. Schmidt-Erfurth, and G. Langs, “Unsupervised anomaly detection with generative adversarial networks to guide marker discovery,” in International conference on information processing in medical imaging.   Springer, 2017, pp. 146–157.
  66. S. Naval Marimont and G. Tarroni, “Implicit field learning for unsupervised anomaly detection in medical images,” in International Conference on Medical Image Computing and Computer-Assisted Intervention.   Springer, 2021, pp. 189–198.
  67. C. Han, L. Rundo, K. Murao, T. Noguchi, Y. Shimahara, Z. Á. Milacski, S. Koshino, E. Sala, H. Nakayama, and S. Satoh, “Madgan: unsupervised medical anomaly detection gan using multiple adjacent brain mri slice reconstruction,” BMC bioinformatics, vol. 22, no. 2, pp. 1–20, 2021.
  68. H. Zhao, Y. Li, N. He, K. Ma, L. Fang, H. Li, and Y. Zheng, “Anomaly detection for medical images using self-supervised and translation-consistent features,” IEEE Transactions on Medical Imaging, 2021.
  69. A. Kumar, O. Irsoy, P. Ondruska, M. Iyyer, J. Bradbury, I. Gulrajani, V. Zhong, R. Paulus, and R. Socher, “Ask me anything: Dynamic memory networks for natural language processing,” in International conference on machine learning.   PMLR, 2016, pp. 1378–1387.
  70. C. Fan, X. Zhang, S. Zhang, W. Wang, C. Zhang, and H. Huang, “Heterogeneous memory enhanced multimodal attention model for video question answering,” in Proceedings of the IEEE/CVF conference on computer vision and pattern recognition, 2019, pp. 1999–2007.
  71. Ł. Kaiser, O. Nachum, A. Roy, and S. Bengio, “Learning to remember rare events,” arXiv preprint arXiv:1703.03129, 2017.
  72. Q. Cai, Y. Pan, T. Yao, C. Yan, and T. Mei, “Memory matching networks for one-shot image recognition,” in Proceedings of the IEEE conference on computer vision and pattern recognition, 2018, pp. 4080–4088.
  73. S. Lee, J. Sung, Y. Yu, and G. Kim, “A memory network approach for story-based temporal summarization of 360 videos,” in Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, 2018, pp. 1410–1419.
  74. D. Gong, L. Liu, V. Le, B. Saha, M. R. Mansour, S. Venkatesh, and A. v. d. Hengel, “Memorizing normality to detect anomaly: Memory-augmented deep autoencoder for unsupervised anomaly detection,” in Proceedings of the IEEE/CVF International Conference on Computer Vision, 2019, pp. 1705–1714.
  75. H. Park, J. Noh, and B. Ham, “Learning memory-guided normality for anomaly detection,” in Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, 2020, pp. 14 372–14 381.
  76. H. Lv, C. Chen, C. Zhen, C. Xu, and J. Yang, “Learning normal dynamics in videos with meta prototype network,” in Proceedings of the IEEE International Conference on Computer Vision and Pattern Recognition, 2021.
  77. A. Kazerouni, E. K. Aghdam, M. Heidari, R. Azad, M. Fayyaz, I. Hacihaliloglu, and D. Merhof, “Diffusion models for medical image analysis: A comprehensive survey,” arXiv preprint arXiv:2211.07804, 2022.
  78. J. Linmans, G. Raya, J. van der Laak, and G. Litjens, “Diffusion models for out-of-distribution detection in digital pathology,” Medical Image Analysis, p. 103088, 2024.
  79. L. Yang, Z. Zhang, Y. Song, S. Hong, R. Xu, Y. Zhao, W. Zhang, B. Cui, and M.-H. Yang, “Diffusion models: A comprehensive survey of methods and applications,” ACM Computing Surveys, vol. 56, no. 4, pp. 1–39, 2023.
  80. S. Du, X. Wang, Y. Lu, Y. Zhou, S. Zhang, A. Yuille, K. Li, and Z. Zhou, “Boosting dermatoscopic lesion segmentation via diffusion models with visual and textual prompts,” arXiv preprint arXiv:2310.02906, 2023.
  81. J. Wolleb, F. Bieder, R. Sandkühler, and P. C. Cattin, “Diffusion models for medical anomaly detection,” in International Conference on Medical image computing and computer-assisted intervention.   Springer, 2022, pp. 35–45.
  82. M. Özbey, O. Dalmaz, S. U. Dar, H. A. Bedel, Ş. Özturk, A. Güngör, and T. Çukur, “Unsupervised medical image translation with adversarial diffusion models,” IEEE Transactions on Medical Imaging, 2023.
  83. T. Xiang, Y. Zhang, Y. Lu, A. L. Yuille, C. Zhang, W. Cai, and Z. Zhou, “Squid: Deep feature in-painting for unsupervised anomaly detection,” in IEEE/CVF Conference on Computer Vision and Pattern Recognition, 2023, pp. 23 890–23 901.
  84. D. E. Rumelhart, G. E. Hinton, and R. J. Williams, “Learning internal representations by error propagation,” California Univ San Diego La Jolla Inst for Cognitive Science, Tech. Rep., 1985.
  85. G. Hinton, O. Vinyals, and J. Dean, “Distilling the knowledge in a neural network,” arXiv preprint arXiv:1503.02531, 2015.
  86. K. He, H. Fan, Y. Wu, S. Xie, and R. Girshick, “Momentum contrast for unsupervised visual representation learning,” in Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, 2020, pp. 9729–9738.
  87. M. Z. Zaheer, A. Mahmood, M. H. Khan, M. Astrid, and S.-I. Lee, “An anomaly detection system via moving surveillance robots with human collaboration,” in Proceedings of the IEEE/CVF International Conference on Computer Vision, 2021, pp. 2595–2601.
  88. D. Gong, Z. Zhang, J. Q. Shi, and A. van den Hengel, “Memory-augmented dynamic neural relational inference,” in Proceedings of the IEEE/CVF International Conference on Computer Vision, 2021, pp. 11 843–11 852.
  89. K. Zhou, J. Li, Y. Xiao, J. Yang, J. Cheng, W. Liu, W. Luo, J. Liu, and S. Gao, “Memorizing structure-texture correspondence for image anomaly detection,” IEEE Transactions on Neural Networks and Learning Systems, 2021.
  90. J. U. Kim, S. Park, and Y. M. Ro, “Robust small-scale pedestrian detection with cued recall via memory learning,” in Proceedings of the IEEE/CVF International Conference on Computer Vision, 2021, pp. 3050–3059.
  91. A. Graves, G. Wayne, and I. Danihelka, “Neural turing machines,” arXiv preprint arXiv:1410.5401, 2014.
  92. E. Jang, S. Gu, and B. Poole, “Categorical reparameterization with gumbel-softmax,” arXiv preprint arXiv:1611.01144, 2016.
  93. D. Pathak, P. Krahenbuhl, J. Donahue, T. Darrell, and A. A. Efros, “Context encoders: Feature learning by inpainting,” in Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, 2016, pp. 2536–2544.
  94. G. Liu, F. A. Reda, K. J. Shih, T.-C. Wang, A. Tao, and B. Catanzaro, “Image inpainting for irregular holes using partial convolutions,” in Proceedings of the European Conference on Computer Vision (ECCV), 2018, pp. 85–100.
  95. A. Vaswani, N. Shazeer, N. Parmar, J. Uszkoreit, L. Jones, A. N. Gomez, L. Kaiser, and I. Polosukhin, “Attention is all you need,” arXiv preprint arXiv:1706.03762, 2017.
  96. A. Radford, L. Metz, and S. Chintala, “Unsupervised representation learning with deep convolutional generative adversarial networks,” arXiv preprint arXiv:1511.06434, 2015.
  97. C.-L. Li, K. Sohn, J. Yoon, and T. Pfister, “Cutpaste: Self-supervised learning for anomaly detection and localization,” in Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, 2021, pp. 9664–9674.
  98. T. Defard, A. Setkov, A. Loesch, and R. Audigier, “Padim: a patch distribution modeling framework for anomaly detection and localization,” in International Conference on Pattern Recognition.   Springer, 2021, pp. 475–489.
  99. Y. Chen, Y. Tian, G. Pang, and G. Carneiro, “Deep one-class classification via interpolated gaussian descriptor,” arXiv preprint arXiv:2101.10043, 2021.
  100. J. Masci, U. Meier, D. Cireşan, and J. Schmidhuber, “Stacked convolutional auto-encoders for hierarchical feature extraction,” in International conference on artificial neural networks.   Springer, 2011, pp. 52–59.
  101. H. Zenati, M. Romain, C.-S. Foo, B. Lecouat, and V. Chandrasekhar, “Adversarially learned anomaly detection,” in 2018 IEEE International conference on data mining (ICDM).   IEEE, 2018, pp. 727–736.
  102. P. Perera, R. Nallapati, and B. Xiang, “Ocgan: One-class novelty detection using gans with constrained latent representations,” in Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, 2019, pp. 2898–2906.
  103. Y. Liu, Y. Tian, G. Maicas, L. Z. C. T. Pu, R. Singh, J. W. Verjans, and G. Carneiro, “Photoshopping colonoscopy video frames,” in 2020 IEEE 17th International Symposium on Biomedical Imaging (ISBI).   IEEE, 2020, pp. 1–5.
  104. Y. Tian, G. Pang, F. Liu, Y. Chen, S. H. Shin, J. W. Verjans, R. Singh, and G. Carneiro, “Constrained contrastive distribution learning for unsupervised anomaly detection and localisation in medical images,” in International Conference on Medical Image Computing and Computer-Assisted Intervention.   Springer, 2021, pp. 128–140.
  105. K. Roth, L. Pemula, J. Zepeda, B. Schölkopf, T. Brox, and P. Gehler, “Towards total recall in industrial anomaly detection,” arXiv preprint arXiv:2106.08265, 2021.
  106. Y. Tian, G. Pang, Y. Liu, C. Wang, Y. Chen, F. Liu, R. Singh, J. W. Verjans, and G. Carneiro, “Unsupervised anomaly detection in medical images with a memory-augmented multi-level cross-attentional masked autoencoder,” arXiv preprint arXiv:2203.11725, 2022.
  107. M. M. Rahman Siddiquee, T. Wu, and B. Li, “A2b-gan: Utilizing unannotated anomalous images for anomaly detection in medical image analysis,” 2021.
  108. Y. Tian, F. Liu, G. Pang, Y. Chen, Y. Liu, J. Verjans, R. Singh, and G. Carneiro, “Self-supervised multi-class pre-training for unsupervised anomaly detection and segmentation in medical images,” 2021.
  109. D. S. Kermany, M. Goldbaum, W. Cai, C. C. Valentim, H. Liang, S. L. Baxter, A. McKeown, G. Yang, X. Wu, F. Yan et al., “Identifying medical diagnoses and treatable diseases by image-based deep learning,” Cell, vol. 172, no. 5, pp. 1122–1131, 2018.
  110. J. Irvin, P. Rajpurkar, M. Ko, Y. Yu, S. Ciurea-Ilcus, C. Chute, H. Marklund, B. Haghgoo, R. Ball, K. Shpanskaya et al., “Chexpert: A large chest radiograph dataset with uncertainty labels and expert comparison,” in Proceedings of the AAAI Conference on Artificial Intelligence, vol. 33, 2019, pp. 590–597.
  111. L. Wang, Z. Q. Lin, and A. Wong, “Covid-net: A tailored deep convolutional neural network design for detection of covid-19 cases from chest x-ray images,” Scientific Reports, vol. 10, no. 1, pp. 1–12, 2020.
  112. Y. Chen, Y. Tian, G. Pang, and G. Carneiro, “Deep one-class classification via interpolated gaussian descriptor,” in Proceedings of the AAAI Conference on Artificial Intelligence, vol. 36, no. 1, 2022, pp. 383–392.
  113. R. R. Selvaraju, M. Cogswell, A. Das, R. Vedantam, D. Parikh, and D. Batra, “Grad-cam: Visual explanations from deep networks via gradient-based localization,” in Proceedings of the IEEE international conference on computer vision, 2017, pp. 618–626.
  114. X. Wang, Y. Peng, L. Lu, Z. Lu, M. Bagheri, and R. M. Summers, “Chestx-ray8: Hospital-scale chest x-ray database and benchmarks on weakly-supervised classification and localization of common thorax diseases,” in Proceedings of the IEEE conference on computer vision and pattern recognition, 2017, pp. 2097–2106.
  115. K. K. Singh and Y. J. Lee, “Hide-and-seek: Forcing a network to be meticulous for weakly-supervised object and action localization,” in 2017 IEEE International Conference on Computer Vision (ICCV).   IEEE, 2017, pp. 3544–3553.
  116. X. Zhang, Y. Wei, J. Feng, Y. Yang, and T. S. Huang, “Adversarial complementary learning for weakly supervised object localization,” in Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, 2018, pp. 1325–1334.
  117. Y. Tang, X. Wang, A. P. Harrison, L. Lu, J. Xiao, and R. M. Summers, “Attention-guided curriculum learning for weakly supervised classification and localization of thoracic diseases on chest radiographs,” in International Workshop on Machine Learning in Medical Imaging.   Springer, 2018, pp. 249–258.
  118. J. Li, N. Wang, L. Zhang, B. Du, and D. Tao, “Recurrent feature reasoning for image inpainting,” in Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, 2020, pp. 7760–7768.
  119. W. H. Pinaya, P.-D. Tudosiu, R. Gray, G. Rees, P. Nachev, S. Ourselin, and M. J. Cardoso, “Unsupervised brain imaging 3d anomaly detection and segmentation with transformers,” Medical Image Analysis, p. 102475, 2022.
Citations (2)

Summary

We haven't generated a summary for this paper yet.

Slide Deck Streamline Icon: https://streamlinehq.com

Whiteboard

Dice Question Streamline Icon: https://streamlinehq.com

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.