Emergent Continuous Time Crystal in Dissipative Quantum Spin System without Driving (2403.08476v3)
Abstract: Time crystals are a nonequilibrium phase of matter that extend fundamental spontaneous symmetry breaking into the temporal dimension, typically requiring external driving for their realization. Here, we explore the nonequilibrium phase diagram of a two-dimensional dissipative Heisenberg spin system without external coherent or incoherent driving. Through numerical analysis of spin dynamics, we identify nonstationary steady states, some of which are limit cycles with persistent periodic oscillations, while others exhibit chaotic, aperiodic behavior. The emergence of limit cycle steady states breaks the continuous time-translation symmetry of this time-independent many-body system, classifying them as continuous time crystals. We further validate these oscillatory behaviors by testing their stability against local perturbations and assess the robustness of the emergent continuous time crystals by introducing isotropic Gaussian white noise. This work provides insights into the intricate interplay between the dissipation and spin interaction, and opens possibilities for realizing dissipation-induced, heating-immune time crystals.
- A. Shapere and F. Wilczek, Phys. Rev. Lett. 109, 160402 (2012).
- F. Wilczek, Phys. Rev. Lett. 109, 160401 (2012).
- J. Zakrzewski, Physics 116 (2012).
- P. Bruno, Phys. Rev. Lett. 111, 070402 (2013).
- P. Nozières, Europhysics Letters 103, 57008 (2013).
- H. Watanabe and M. Oshikawa, Phys. Rev. Lett. 114, 251603 (2015).
- V. K. Kozin and O. Kyriienko, Phys. Rev. Lett. 123, 210602 (2019).
- K. Sacha, Phys. Rev. A 91, 033617 (2015).
- P. Richerme, Physics 10 (2017).
- P. Xu and T.-S. Deng, Phys. Rev. B 107, 104301 (2023).
- T. Mori, Phys. Rev. B 98, 104303 (2018).
- J. Preskill, arXiv:2208.08064 .
- Z. Gong and M. Ueda, Physics 14 (2021).
- K. Sacha and J. Zakrzewski, Reports on Progress in Physics 81, 016401 (2017).
- L. Guo and P. Liang, New Journal of Physics 22, 075003 (2020).
- D. Gonze, Open Life Sciences 6, 712 (2011).
- S. E. Nigg, Phys. Rev. A 97, 013811 (2018).
- A. Roulet and C. Bruder, Phys. Rev. Lett. 121, 053601 (2018).
- M. Koppenhöfer and A. Roulet, Phys. Rev. A 99, 043804 (2019).
- A. Parra-López and J. Bergli, Phys. Rev. A 101, 062104 (2020).
- X. Nie and W. Zheng, Phys. Rev. A 107, 033311 (2023).
- Á. Rivas and S. Huelga, Open Quantum Systems: An Introduction, SpringerBriefs in Physics (Springer Berlin Heidelberg, 2011).
- I. de Vega and D. Alonso, Rev. Mod. Phys. 89, 015001 (2017).
- L. Song and J. Jin, Phys. Rev. B 108, 054302 (2023).
- Y. Zhang and T. Barthel, Phys. Rev. Lett. 129, 120401 (2022).
- J. Kazemi and H. Weimer, Phys. Rev. Lett. 130, 163601 (2023a).
- T. Haga, Phys. Rev. A 107, 052208 (2023).
- C. D. Parmee and N. R. Cooper, Phys. Rev. A 97, 053616 (2018).
- C. D. Parmee and N. R. Cooper, Journal of Physics B: Atomic, Molecular and Optical Physics 53, 135302 (2020).
- D. E. Evans, Commun.Math. Phys. 54, 293 (1977).
- A. Frigerio, Communications in Mathematical Physics 63, 269 (1978).
- T. Prosen, Physica Scripta 86, 058511 (2012).
- T. Prosen, Journal of Physics A: Mathematical and Theoretical 48, 373001 (2015).
- S. G. Schirmer and X. Wang, Phys. Rev. A 81, 062306 (2010).
- S. Sachdev, Quantum Phase Transitions, 2nd ed. (Cambridge University Press, 2011).
- See Supplemental Material for details on (I) Calculation of Lyapunov exponent; (II) The robustness of CTC under 1/f1𝑓1/f1 / italic_f noise. The Supplemental Materials includes the references [110] .
- J. Kazemi and H. Weimer, Phys. Rev. Lett. 130, 163601 (2023b).
- U. Schollwöck, Rev. Mod. Phys. 77, 259 (2005).
- C. Reichhardt, I. Regev, K. Dahmen, S. Okuma, and C. J. O. Reichhardt, “Perspective on reversible to irreversible transitions in periodic driven many body systems and future directions for classical and quantum systems,” arXiv:2211.03775 .
Paper Prompts
Sign up for free to create and run prompts on this paper using GPT-5.
Top Community Prompts
Collections
Sign up for free to add this paper to one or more collections.