Papers
Topics
Authors
Recent
Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 179 tok/s
Gemini 2.5 Pro 51 tok/s Pro
GPT-5 Medium 40 tok/s Pro
GPT-5 High 35 tok/s Pro
GPT-4o 103 tok/s Pro
Kimi K2 207 tok/s Pro
GPT OSS 120B 451 tok/s Pro
Claude Sonnet 4.5 35 tok/s Pro
2000 character limit reached

Quantum skyrmion dynamics studied by neural network quantum states (2403.08184v1)

Published 13 Mar 2024 in cond-mat.dis-nn and cond-mat.mes-hall

Abstract: We study the dynamics of quantum skyrmions under a magnetic field gradient using neural network quantum states. First, we obtain a quantum skyrmion lattice ground state using variational Monte Carlo with a restricted Boltzmann machine as the variational ansatz for a quantum Heisenberg model with Dzyaloshinskii-Moriya interaction. Then, using the time-dependent variational principle, we study the real-time evolution of quantum skyrmions after a Hamiltonian quench with an inhomogeneous external magnetic field. We show that field gradients are an effective way of manipulating and moving quantum skyrmions. Furthermore, we demonstrate that quantum skyrmions can decay when interacting with each other. This work shows that neural network quantum states offer a promising way of studying the real-time evolution of quantum magnetic systems that are outside the realm of exact diagonalization.

Citations (3)

Summary

We haven't generated a summary for this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.