Quantum skyrmion dynamics studied by neural network quantum states (2403.08184v1)
Abstract: We study the dynamics of quantum skyrmions under a magnetic field gradient using neural network quantum states. First, we obtain a quantum skyrmion lattice ground state using variational Monte Carlo with a restricted Boltzmann machine as the variational ansatz for a quantum Heisenberg model with Dzyaloshinskii-Moriya interaction. Then, using the time-dependent variational principle, we study the real-time evolution of quantum skyrmions after a Hamiltonian quench with an inhomogeneous external magnetic field. We show that field gradients are an effective way of manipulating and moving quantum skyrmions. Furthermore, we demonstrate that quantum skyrmions can decay when interacting with each other. This work shows that neural network quantum states offer a promising way of studying the real-time evolution of quantum magnetic systems that are outside the realm of exact diagonalization.
Paper Prompts
Sign up for free to create and run prompts on this paper using GPT-5.
Top Community Prompts
Collections
Sign up for free to add this paper to one or more collections.