Papers
Topics
Authors
Recent
Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 134 tok/s
Gemini 2.5 Pro 44 tok/s Pro
GPT-5 Medium 20 tok/s Pro
GPT-5 High 31 tok/s Pro
GPT-4o 100 tok/s Pro
Kimi K2 177 tok/s Pro
GPT OSS 120B 434 tok/s Pro
Claude Sonnet 4.5 36 tok/s Pro
2000 character limit reached

Final state radiation from high and ultrahigh energy neutrino interactions (2403.07984v3)

Published 12 Mar 2024 in hep-ph, astro-ph.HE, and hep-ex

Abstract: Charged leptons produced by high-energy and ultrahigh-energy neutrinos have a substantial probability of emitting prompt internal bremsstrahlung $\nu_\ell + N \rightarrow \ell + X + \gamma$. This can have important consequences for neutrino detection. We discuss observable consequences at high- and ultrahigh-energy neutrino telescopes and the Large Hadron Collider's Forward Physics Facility. Logarithmic enhancements can be substantial (e.g., $\sim 20\%$) when either the charged lepton's energy or the rest of the cascade is measured. We comment on final state radiation's impacts on measuring the inelasticity distribution, $\nu/\bar{\nu}$ flux ratio, throughgoing muons, and double-bang signatures for high-energy neutrino observation. Furthermore, for ultrahigh-energy neutrino observation, we find that final state radiation increases the overall detectable energy by as much as 20\%, affects flavor measurements, and decreases the energy of both Earth-emergent tau leptons and regenerated tau neutrinos. Many of these have significant impacts on measuring neutrino fluxes and spectra. Finally, for the Large Hadron Collider's Forward Physics Facility, we find that final state radiation will impact future extractions of strange quark parton distribution functions. Final state radiation should be included in future analyses at neutrino telescopes and the Forward Physics Facility.

Definition Search Book Streamline Icon: https://streamlinehq.com
References (109)
  1. Markus Ackermann et al., “High-energy and ultra-high-energy neutrinos: A Snowmass white paper,” JHEAp 36, 55–110 (2022), arXiv:2203.08096 [hep-ph] .
  2. Markus Ackermann et al., “Astrophysics Uniquely Enabled by Observations of High-Energy Cosmic Neutrinos,” Bull. Am. Astron. Soc. 51, 185 (2019), arXiv:1903.04334 [astro-ph.HE] .
  3. B. P. Abbott et al., “Multi-messenger Observations of a Binary Neutron Star Merger,” Astrophys. J. Lett. 848, L12 (2017), arXiv:1710.05833 [astro-ph.HE] .
  4. M. G. Aartsen et al., “Multimessenger observations of a flaring blazar coincident with high-energy neutrino IceCube-170922A,” Science 361, eaat1378 (2018), arXiv:1807.08816 [astro-ph.HE] .
  5. R. Abbasi et al. (IceCube), “Evidence for neutrino emission from the nearby active galaxy NGC 1068,” Science 378, 538–543 (2022a), arXiv:2211.09972 [astro-ph.HE] .
  6. R. Abbasi et al. (IceCube), “Observation of high-energy neutrinos from the Galactic plane,” Science 380, adc9818 (2023), arXiv:2307.04427 [astro-ph.HE] .
  7. Spencer R. Klein, “Probing high-energy interactions of atmospheric and astrophysical neutrinos,”  (2020) arXiv:1906.02221 [astro-ph.HE] .
  8. Mary Hall Reno, “High-Energy to Ultrahigh-Energy Neutrino Interactions,” Annual Review of Nuclear and Particle Science 73, 181–204 (2023).
  9. Valerio Bertone, Rhorry Gauld,  and Juan Rojo, “Neutrino Telescopes as QCD Microscopes,” JHEP 01, 217 (2019), arXiv:1808.02034 [hep-ph] .
  10. S. Amoroso et al., “Snowmass 2021 Whitepaper: Proton Structure at the Precision Frontier,” Acta Phys. Polon. B 53, 12–A1 (2022), arXiv:2203.13923 [hep-ph] .
  11. Juan M. Cruz-Martinez, Max Fieg, Tommaso Giani, Peter Krack, Toni Mäkelä, Tanjona Rabemananjara,  and Juan Rojo, “The LHC as a Neutrino-Ion Collider,”   (2023), arXiv:2309.09581 [hep-ph] .
  12. O. Samoylov et al. (NOMAD), “A Precision Measurement of Charm Dimuon Production in Neutrino Interactions from the NOMAD Experiment,” Nucl. Phys. B 876, 339–375 (2013), arXiv:1308.4750 [hep-ex] .
  13. Giovanni De Lellis, Pasquale Migliozzi,  and Pietro Santorelli, “Charm physics with neutrinos,” Phys. Rept. 399, 227–320 (2004), [Erratum: Phys.Rept. 411, 323–324 (2005)].
  14. Tie-Jiun Hou et al., “New CTEQ global analysis of quantum chromodynamics with high-precision data from the LHC,” Phys. Rev. D 103, 014013 (2021), arXiv:1912.10053 [hep-ph] .
  15. Ferran Faura, Shayan Iranipour, Emanuele R. Nocera, Juan Rojo,  and Maria Ubiali, “The Strangest Proton?” Eur. Phys. J. C 80, 1168 (2020), arXiv:2009.00014 [hep-ph] .
  16. Bei Zhou and John F. Beacom, “Dimuons in neutrino telescopes: New predictions and first search in IceCube,” Phys. Rev. D 105, 093005 (2022), arXiv:2110.02974 [hep-ph] .
  17. M. G. Aartsen et al. (IceCube), “Measurement of the multi-TeV neutrino cross section with IceCube using Earth absorption,” Nature 551, 596–600 (2017), arXiv:1711.08119 [hep-ex] .
  18. Mauricio Bustamante and Amy Connolly, “Extracting the Energy-Dependent Neutrino-Nucleon Cross Section above 10 TeV Using IceCube Showers,” Phys. Rev. Lett. 122, 041101 (2019), arXiv:1711.11043 [astro-ph.HE] .
  19. R. Abbasi et al. (IceCube), “Measurement of the high-energy all-flavor neutrino-nucleon cross section with IceCube,”   (2020), 10.1103/PhysRevD.104.022001, arXiv:2011.03560 [hep-ex] .
  20. Victor Branco Valera, Mauricio Bustamante,  and Christian Glaser, “The ultra-high-energy neutrino-nucleon cross section: measurement forecasts for an era of cosmic EeV-neutrino discovery,” JHEP 06, 105 (2022), arXiv:2204.04237 [hep-ph] .
  21. Ivan Esteban, Steven Prohira,  and John F. Beacom, “Detector requirements for model-independent measurements of ultrahigh energy neutrino cross sections,” Phys. Rev. D 106, 023021 (2022), arXiv:2205.09763 [hep-ph] .
  22. Victor B. Valera, Mauricio Bustamante,  and Olga Mena, “Joint measurement of the ultra-high-energy neutrino spectrum and cross section,”   (2023), arXiv:2308.07709 [astro-ph.HE] .
  23. Luis A. Anchordoqui et al., “The Forward Physics Facility: Sites, experiments, and physics potential,” Phys. Rept. 968, 1–50 (2022), arXiv:2109.10905 [hep-ph] .
  24. Jonathan L. Feng et al., “The Forward Physics Facility at the High-Luminosity LHC,” J. Phys. G 50, 030501 (2023), arXiv:2203.05090 [hep-ex] .
  25. Dan Hooper, “Detecting MeV Gauge Bosons with High-Energy Neutrino Telescopes,” Phys. Rev. D 75, 123001 (2007), arXiv:hep-ph/0701194 .
  26. Kenny C. Y. Ng and John F. Beacom, “Cosmic neutrino cascades from secret neutrino interactions,” Phys. Rev. D 90, 065035 (2014), [Erratum: Phys.Rev.D 90, 089904 (2014)], arXiv:1404.2288 [astro-ph.HE] .
  27. Kunihto Ioka and Kohta Murase, “IceCube PeV–EeV neutrinos and secret interactions of neutrinos,” PTEP 2014, 061E01 (2014), arXiv:1404.2279 [astro-ph.HE] .
  28. Mauricio Bustamante, Charlotte Rosenstrøm, Shashank Shalgar,  and Irene Tamborra, “Bounds on secret neutrino interactions from high-energy astrophysical neutrinos,” Phys. Rev. D 101, 123024 (2020), arXiv:2001.04994 [astro-ph.HE] .
  29. Cyril Creque-Sarbinowski, Jeffrey Hyde,  and Marc Kamionkowski, “Resonant neutrino self-interactions,” Phys. Rev. D 103, 023527 (2021), arXiv:2005.05332 [hep-ph] .
  30. Ivan Esteban, Sujata Pandey, Vedran Brdar,  and John F. Beacom, “Probing secret interactions of astrophysical neutrinos in the high-statistics era,” Phys. Rev. D 104, 123014 (2021), arXiv:2107.13568 [hep-ph] .
  31. Poonam Mehta and Walter Winter, “Interplay of energy dependent astrophysical neutrino flavor ratios and new physics effects,” JCAP 03, 041 (2011), arXiv:1101.2673 [hep-ph] .
  32. Carlos A. Argüelles, Teppei Katori,  and Jordi Salvado, “New Physics in Astrophysical Neutrino Flavor,” Phys. Rev. Lett. 115, 161303 (2015), arXiv:1506.02043 [hep-ph] .
  33. Mauricio Bustamante, John F. Beacom,  and Walter Winter, “Theoretically palatable flavor combinations of astrophysical neutrinos,” Phys. Rev. Lett. 115, 161302 (2015), arXiv:1506.02645 [astro-ph.HE] .
  34. Ian M. Shoemaker and Kohta Murase, “Probing BSM Neutrino Physics with Flavor and Spectral Distortions: Prospects for Future High-Energy Neutrino Telescopes,” Phys. Rev. D 93, 085004 (2016), arXiv:1512.07228 [astro-ph.HE] .
  35. Markus Ahlers, Mauricio Bustamante,  and Niels Gustav Nortvig Willesen, “Flavors of astrophysical neutrinos with active-sterile mixing,” JCAP 07, 029 (2021), arXiv:2009.01253 [hep-ph] .
  36. Andrew R. Zentner, “High-Energy Neutrinos From Dark Matter Particle Self-Capture Within the Sun,” Phys. Rev. D 80, 063501 (2009), arXiv:0907.3448 [astro-ph.HE] .
  37. Yang Bai, Ran Lu,  and Jordi Salvado, “Geometric Compatibility of IceCube TeV-PeV Neutrino Excess and its Galactic Dark Matter Origin,” JHEP 01, 161 (2016), arXiv:1311.5864 [hep-ph] .
  38. Mary Hall Reno et al., ‘‘Neutrino constraints on long-lived heavy dark sector particle decays in the Earth,” Phys. Rev. D 105, 055013 (2022), arXiv:2107.01159 [hep-ph] .
  39. Uri Jacob and Tsvi Piran, “Neutrinos from gamma-ray bursts as a tool to explore quantum-gravity-induced Lorentz violation,” Nature Phys. 3, 87–90 (2007), arXiv:hep-ph/0607145 .
  40. A. Addazi et al., “Quantum gravity phenomenology at the dawn of the multi-messenger era—A review,” Prog. Part. Nucl. Phys. 125, 103948 (2022), arXiv:2111.05659 [hep-ph] .
  41. S. Adrian-Martinez et al. (KM3Net), “Letter of intent for KM3NeT 2.0,” J. Phys. G 43, 084001 (2016), arXiv:1601.07459 [astro-ph.IM] .
  42. Jaime Álvarez-Muñiz et al. (GRAND), “The Giant Radio Array for Neutrino Detection (GRAND): Science and Design,” Sci. China Phys. Mech. Astron. 63, 219501 (2020), arXiv:1810.09994 [astro-ph.HE] .
  43. M. G. Aartsen et al. (IceCube-Gen2), “IceCube-Gen2: the window to the extreme Universe,” J. Phys. G 48, 060501 (2021), arXiv:2008.04323 [astro-ph.HE] .
  44. Matteo Agostini et al. (P-ONE), “The Pacific Ocean Neutrino Experiment,” Nature Astron. 4, 913–915 (2020), arXiv:2005.09493 [astro-ph.HE] .
  45. Q. Abarr et al. (PUEO), “The Payload for Ultrahigh Energy Observations (PUEO): a white paper,” JINST 16, P08035 (2021), arXiv:2010.02892 [astro-ph.IM] .
  46. J. A. Aguilar et al. (RNO-G), “Design and Sensitivity of the Radio Neutrino Observatory in Greenland (RNO-G),” JINST 16, P03025 (2021), [Erratum: JINST 18, E03001 (2023)], arXiv:2010.12279 [astro-ph.IM] .
  47. A. V. Olinto et al. (POEMMA), “The POEMMA (Probe of Extreme Multi-Messenger Astrophysics) observatory,” JCAP 06, 007 (2021), arXiv:2012.07945 [astro-ph.IM] .
  48. Andres Romero-Wolf et al., ‘‘An Andean Deep-Valley Detector for High-Energy Tau Neutrinos,” in Latin American Strategy Forum for Research Infrastructure (2020) arXiv:2002.06475 [astro-ph.IM] .
  49. Z. P. Ye et al., “Proposal for a neutrino telescope in South China Sea,”  (2022), arXiv:2207.04519 [astro-ph.HE] .
  50. Amanda Cooper-Sarkar, Philipp Mertsch,  and Subir Sarkar, “The high energy neutrino cross-section in the Standard Model and its uncertainty,” JHEP 08, 042 (2011), arXiv:1106.3723 [hep-ph] .
  51. Amy Connolly, Robert S. Thorne,  and David Waters, “Calculation of High Energy Neutrino-Nucleon Cross Sections and Uncertainties Using the MSTW Parton Distribution Functions and Implications for Future Experiments,” Phys. Rev. D 83, 113009 (2011), arXiv:1102.0691 [hep-ph] .
  52. D. Seckel, “Neutrino photon reactions in astrophysics and cosmology,” Phys. Rev. Lett. 80, 900–903 (1998), arXiv:hep-ph/9709290 .
  53. I. Alikhanov, “Hidden Glashow resonance in neutrino–nucleus collisions,” Phys. Lett. B 756, 247–253 (2016), arXiv:1503.08817 [hep-ph] .
  54. Rhorry Gauld, “Precise predictions for multi-TeV and PeV energy neutrino scattering rates,” Phys. Rev. D 100, 091301 (2019), arXiv:1905.03792 [hep-ph] .
  55. Bei Zhou and John F. Beacom, “Neutrino-nucleus cross sections for W-boson and trident production,” Phys. Rev. D 101, 036011 (2020a), arXiv:1910.08090 [hep-ph] .
  56. Bei Zhou and John F. Beacom, “W-boson and trident production in TeV–PeV neutrino observatories,” Phys. Rev. D 101, 036010 (2020b), arXiv:1910.10720 [hep-ph] .
  57. Keping Xie, Bei Zhou,  and T. J. Hobbs, “The Photon Content of the Neutron,”   (2023b), arXiv:2305.10497 [hep-ph] .
  58. Guenter Sigl, “Ultrahigh-energy neutrino - nucleon cross-section and radiative corrections,” Phys. Rev. D 57, 3786–3789 (1998), arXiv:hep-ph/9708420 .
  59. M. G. Aartsen et al. (IceCube), “Measurements using the inelasticity distribution of multi-TeV neutrino interactions in IceCube,” Phys. Rev. D 99, 032004 (2019), arXiv:1808.07629 [hep-ex] .
  60. Michael E. Peskin and Daniel V. Schroeder, An Introduction to quantum field theory (Addison-Wesley, Reading, USA, 1995).
  61. P. A. Zyla et al. (Particle Data Group), “Review of Particle Physics,” PTEP 2020, 083C01 (2020).
  62. W. J. Marciano and A. Sirlin, ‘‘Radiative Corrections to Neutrino Induced Neutral Current Phenomena in the SU(2)-L x U(1) Theory,” Phys. Rev. D 22, 2695 (1980), [Erratum: Phys.Rev.D 31, 213 (1985)].
  63. A. Sirlin and W. J. Marciano, “Radiative Corrections to νμ⁢N→μ−⁢X→subscript𝜈𝜇𝑁superscript𝜇𝑋\nu_{\mu}N\rightarrow\mu^{-}Xitalic_ν start_POSTSUBSCRIPT italic_μ end_POSTSUBSCRIPT italic_N → italic_μ start_POSTSUPERSCRIPT - end_POSTSUPERSCRIPT italic_X and their Effect on the Determination of ρ2superscript𝜌2\rho^{2}italic_ρ start_POSTSUPERSCRIPT 2 end_POSTSUPERSCRIPT and sin2⁡θWsuperscript2subscript𝜃𝑊\sin^{2}\theta_{W}roman_sin start_POSTSUPERSCRIPT 2 end_POSTSUPERSCRIPT italic_θ start_POSTSUBSCRIPT italic_W end_POSTSUBSCRIPT ,” Nucl. Phys. B 189, 442–460 (1981).
  64. S. Sarantakos, A. Sirlin,  and W. J. Marciano, “Radiative Corrections to Neutrino-Lepton Scattering in the SU(2)-L x U(1) Theory,” Nucl. Phys. B 217, 84–116 (1983).
  65. J. F. Wheater and C. H. Llewellyn Smith, “Electroweak Radiative Corrections to Neutrino and Electron Scattering and the Value of sin2⁡θWsuperscript2subscript𝜃𝑊\sin^{2}\theta_{W}roman_sin start_POSTSUPERSCRIPT 2 end_POSTSUPERSCRIPT italic_θ start_POSTSUBSCRIPT italic_W end_POSTSUBSCRIPT,” Nucl. Phys. B 208, 27 (1982), [Erratum: Nucl.Phys.B 226, 547 (1983)].
  66. A. B. Arbuzov, D. Yu. Bardin,  and L. V. Kalinovskaya, “Radiative corrections to neutrino deep inelastic scattering revisited,” JHEP 06, 078 (2005), arXiv:hep-ph/0407203 .
  67. K. P. O. Diener, S. Dittmaier,  and W. Hollik, “Electroweak radiative corrections to deep inelastic neutrino scattering: Implications for NuTeV?” Phys. Rev. D 69, 073005 (2004), arXiv:hep-ph/0310364 .
  68. Oleksandr Tomalak, Qing Chen, Richard J. Hill, Kevin S. McFarland,  and Clarence Wret, “Theory of QED radiative corrections to neutrino scattering at accelerator energies,” Phys. Rev. D 106, 093006 (2022b), arXiv:2204.11379 [hep-ph] .
  69. J. A. Formaggio and G. P. Zeller, “From eV to EeV: Neutrino Cross Sections Across Energy Scales,” Rev. Mod. Phys. 84, 1307–1341 (2012), arXiv:1305.7513 [hep-ex] .
  70. Raj Gandhi, Chris Quigg, Mary Hall Reno,  and Ina Sarcevic, “Ultrahigh-energy neutrino interactions,” Astropart. Phys. 5, 81–110 (1996), arXiv:hep-ph/9512364 .
  71. Raj Gandhi, Chris Quigg, Mary Hall Reno,  and Ina Sarcevic, “Neutrino interactions at ultrahigh-energies,” Phys. Rev. D 58, 093009 (1998), arXiv:hep-ph/9807264 .
  72. Chien-Yi Chen, P. S. Bhupal Dev,  and Amarjit Soni, “Standard model explanation of the ultrahigh energy neutrino events at IceCube,” Phys. Rev. D 89, 033012 (2014), arXiv:1309.1764 [hep-ph] .
  73. T. Kinoshita, “Mass singularities of Feynman amplitudes,” J. Math. Phys. 3, 650–677 (1962).
  74. T. D. Lee and M. Nauenberg, “Degenerate Systems and Mass Singularities,” Phys. Rev. 133, B1549–B1562 (1964).
  75. V. N. Gribov and L. N. Lipatov, ‘‘Deep inelastic e p scattering in perturbation theory,” Sov. J. Nucl. Phys. 15, 438–450 (1972).
  76. “Reports of the working group on precision calculations for the Z resonance,” in Workshop Group on Precision Calculations for the Z Resonance (2nd meeting held Mar 31, 3rd meeting held Jun 13), CERN Yellow Reports: Monographs (1995).
  77. Keping Xie, Private communications.
  78. M. G. Aartsen et al. (IceCube), “Energy Reconstruction Methods in the IceCube Neutrino Telescope,” JINST 9, P03009 (2014), arXiv:1311.4767 [physics.ins-det] .
  79. W. R. Frazer, C. H. Poon, D. Silverman,  and H. J. Yesian, “Limiting fragmentation and the charge ratio of cosmic ray muons,” Phys. Rev. D 5, 1653–1657 (1972).
  80. Thomas K. Gaisser, “Spectrum of cosmic-ray nucleons, kaon production, and the atmospheric muon charge ratio,” Astropart. Phys. 35, 801–806 (2012), arXiv:1111.6675 [astro-ph.HE] .
  81. Thomas K. Gaisser, Todor Stanev,  and Serap Tilav, “Cosmic Ray Energy Spectrum from Measurements of Air Showers,” Front. Phys. (Beijing) 8, 748–758 (2013), arXiv:1303.3565 [astro-ph.HE] .
  82. Felix Riehn, Hans P. Dembinski, Ralph Engel, Anatoli Fedynitch, Thomas K. Gaisser,  and Todor Stanev, “The hadronic interaction model SIBYLL 2.3c and Feynman scaling,” PoS ICRC2017, 301 (2018), arXiv:1709.07227 [hep-ph] .
  83. Mathieu Ribordy and Alexei Yu Smirnov, “Improving the neutrino mass hierarchy identification with inelasticity measurement in PINGU and ORCA,” Phys. Rev. D 87, 113007 (2013), arXiv:1303.0758 [hep-ph] .
  84. Shao-Feng Ge and Kaoru Hagiwara, “Physics Reach of Atmospheric Neutrino Measurements at PINGU,” JHEP 09, 024 (2014), arXiv:1312.0457 [hep-ph] .
  85. Santiago Giner Olavarrieta, Miaochen Jin, Carlos A. Argüelles, Pablo Fernández,  and Ivan Martínez-Soler, “Boosting Neutrino Mass Ordering Sensitivity with Inelasticity for Atmospheric Neutrino Oscillation Measurement,”  (2024), arXiv:2402.13308 [hep-ph] .
  86. John G. Learned and Sandip Pakvasa, ‘‘Detecting tau-neutrino oscillations at PeV energies,” Astropart. Phys. 3, 267–274 (1995), arXiv:hep-ph/9405296 .
  87. R. Abbasi et al. (IceCube), “Detection of astrophysical tau neutrino candidates in IceCube,” Eur. Phys. J. C 82, 1031 (2022b), arXiv:2011.03561 [hep-ex] .
  88. G. A. Askar’yan, “Excess negative charge of an electron-photon shower and its coherent radio emission,” Zh. Eksp. Teor. Fiz. 41, 616–618 (1961).
  89. P. W. Gorham et al. (ANITA), “The Antarctic Impulsive Transient Antenna Ultra-high Energy Neutrino Detector Design, Performance, and Sensitivity for 2006-2007 Balloon Flight,” Astropart. Phys. 32, 10–41 (2009), arXiv:0812.1920 [astro-ph] .
  90. A. Anker et al. (ARIANNA), “Targeting ultra-high energy neutrinos with the ARIANNA experiment,” Adv. Space Res. 64, 2595–2609 (2019), arXiv:1903.01609 [astro-ph.IM] .
  91. Federico Testagrossa, Damiano F. G. Fiorillo,  and Mauricio Bustamante, “Two-detector flavor sensitivity to ultra-high-energy cosmic neutrinos,”   (2023), arXiv:2310.12215 [astro-ph.HE] .
  92. Alan Coleman, Oscar Ericsson, Mauricio Bustamante,  and Christian Glaser, “The flavor composition of ultra-high-energy cosmic neutrinos: measurement forecasts for in-ice radio-based EeV neutrino telescopes,”   (2024), arXiv:2402.02432 [astro-ph.HE] .
  93. Lisa Gerhardt and Spencer R. Klein, “Electron and Photon Interactions in the Regime of Strong LPM Suppression,” Phys. Rev. D 82, 074017 (2010), arXiv:1007.0039 [hep-ph] .
  94. F. Halzen and D. Saltzberg, “Tau-neutrino appearance with a 1000 megaparsec baseline,” Phys. Rev. Lett. 81, 4305–4308 (1998), arXiv:hep-ph/9804354 .
  95. Oscar Blanch Bigas, Olivier Deligny, Kevin Payet,  and Veronique Van Elewyck, “UHE tau neutrino flux regeneration while skimming the Earth,” Phys. Rev. D 78, 063002 (2008), arXiv:0806.2126 [astro-ph] .
  96. Jaime Alvarez-Muñiz, Washington R. Carvalho, Austin L. Cummings, Kévin Payet, Andrés Romero-Wolf, Harm Schoorlemmer,  and Enrique Zas, “Comprehensive approach to tau-lepton production by high-energy tau neutrinos propagating through the Earth,” Phys. Rev. D 97, 023021 (2018), [Erratum: Phys.Rev.D 99, 069902 (2019)], arXiv:1707.00334 [astro-ph.HE] .
  97. Henso Abreu et al. (FASER), “Technical Proposal: FASERnu,”   (2020), arXiv:2001.03073 [physics.ins-det] .
  98. Henso Abreu et al. (FASER), “First neutrino interaction candidates at the LHC,” Phys. Rev. D 104, L091101 (2021), arXiv:2105.06197 [hep-ex] .
  99. G. Acampora et al. (SND@LHC), “SND@LHC: The Scattering and Neutrino Detector at the LHC,”   (2022), arXiv:2210.02784 [hep-ex] .
  100. R. Albanese et al. (SND@LHC), “Observation of Collider Muon Neutrinos with the SND@LHC Experiment,” Phys. Rev. Lett. 131, 031802 (2023), arXiv:2305.09383 [hep-ex] .
  101. Brian Batell, Jonathan L. Feng,  and Sebastian Trojanowski, “Detecting Dark Matter with Far-Forward Emulsion and Liquid Argon Detectors at the LHC,” Phys. Rev. D 103, 075023 (2021), arXiv:2101.10338 [hep-ph] .
  102. Felix Kling and Laurence J. Nevay, “Forward neutrino fluxes at the LHC,” Phys. Rev. D 104, 113008 (2021), arXiv:2105.08270 [hep-ph] .
  103. “Neutrino Rate Predictions for FASER,”   (2024), arXiv:2402.13318 [hep-ex] .
  104. David Alexander Mason, Measurement of the strange - antistrange asymmetry at NLO in QCD from NuTeV dimuon data, Ph.D. thesis, University of Oregon (2006).
  105. M. Goncharov et al. (NuTeV), “Precise Measurement of Dimuon Production Cross-Sections in νμsubscript𝜈𝜇\nu_{\mu}italic_ν start_POSTSUBSCRIPT italic_μ end_POSTSUBSCRIPT Fe and ν¯μsubscript¯𝜈𝜇\bar{\nu}_{\mu}over¯ start_ARG italic_ν end_ARG start_POSTSUBSCRIPT italic_μ end_POSTSUBSCRIPT Fe Deep Inelastic Scattering at the Tevatron.” Phys. Rev. D 64, 112006 (2001), arXiv:hep-ex/0102049 .
  106. Richard D. Ball et al. (NNPDF), “The path to proton structure at 1% accuracy,” Eur. Phys. J. C 82, 428 (2022), arXiv:2109.02653 [hep-ph] .
  107. A. Kwiatkowski, H. Spiesberger,  and H. J. Mohring, “Heracles: An Event Generator for e⁢p𝑒𝑝epitalic_e italic_p Interactions at HERA Energies Including Radiative Processes: Version 1.0,” Comput. Phys. Commun. 69, 155–172 (1992).
  108. M. G. Aartsen et al. (IceCube), “Evidence for High-Energy Extraterrestrial Neutrinos at the IceCube Detector,” Science 342, 1242856 (2013), arXiv:1311.5238 [astro-ph.HE] .
  109. Henso Abreu et al. (FASER), “First Direct Observation of Collider Neutrinos with FASER at the LHC,” Phys. Rev. Lett. 131, 031801 (2023), arXiv:2303.14185 [hep-ex] .
Citations (4)

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

Authors (2)

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

X Twitter Logo Streamline Icon: https://streamlinehq.com

Tweets

This paper has been mentioned in 5 tweets and received 1 like.

Upgrade to Pro to view all of the tweets about this paper: