Infinite tower of higher-curvature corrections: Quasinormal modes and late-time behavior of D-dimensional regular black holes (2403.07848v4)
Abstract: Recently, Bueno, Cano, and Hennigar [arXiv:2403.04827] proposed a generic approach for incorporating an infinite tower of higher-curvature corrections into the Einstein theory. In this study, we compute quasinormal modes for certain regular D-dimensional black holes resulting from this infinite series of higher-curvature corrections, specifically focusing on the $D$-dimensional extensions of the Bardeen and Hayward black holes. We demonstrate that while the fundamental mode is minimally affected by moderate coupling constants, the higher overtones exhibit significant sensitivity even to small coupling values, yielding unconventional modes characterized by vanishing real oscillation frequencies. When comparing the frequencies derived from the metric truncated at several orders of higher-curvature corrections with those resulting from the infinite series of terms, we observe a rapid convergence of the frequencies to their limit for the complete regular black hole. This validates the extensive research conducted on specific theories with a finite number of higher-curvature corrections, such as the Lovelock theory.
- A. D. Sakharov. Nachal’naia stadija rasshirenija Vselennoj i vozniknovenije neodnorodnosti raspredelenija veshchestva. Sov. Phys. JETP, 22:241, 1966.
- JÂ Bardeen. Non-singular general relativistic gravitational collapse. In Proceedings of the 5th International Conference on Gravitation and the Theory of Relativity, Sept. 1968.
- I. Dymnikova. Vacuum nonsingular black hole. Gen. Rel. Grav., 24:235–242, 1992.
- Arvind Borde. Open and closed universes, initial singularities and inflation. Phys. Rev. D, 50:3692–3702, 1994.
- Sean A. Hayward. Formation and evaporation of regular black holes. Phys. Rev. Lett., 96:031103, 2006.
- Jose P. S. Lemos and Vilson T. Zanchin. Regular black holes: Electrically charged solutions, Reissner-Nordström outside a de Sitter core. Phys. Rev. D, 83:124005, 2011.
- Rotating regular black holes. Phys. Lett. B, 721:329–334, 2013.
- Black-bounce to traversable wormhole. JCAP, 02:042, 2019.
- Bardeen Regular Black Hole With an Electric Source. JCAP, 06:025, 2018.
- Models of regular Schwarzschild black holes satisfying weak energy conditions. Class. Quant. Grav., 13(5):L51–L58, 1996.
- Regular black hole in general relativity coupled to nonlinear electrodynamics. Phys. Rev. Lett., 80:5056–5059, 1998.
- Kirill A. Bronnikov. Regular magnetic black holes and monopoles from nonlinear electrodynamics. Phys. Rev. D, 63:044005, 2001.
- The Bardeen model as a nonlinear magnetic monopole. Phys. Lett. B, 493:149–152, 2000.
- K. A. Bronnikov. Comment on ‘Regular black hole in general relativity coupled to nonlinear electrodynamics’. Phys. Rev. Lett., 85:4641, 2000.
- Four parametric regular black hole solution. Gen. Rel. Grav., 37:635, 2005.
- Irina Dymnikova. Regular electrically charged structures in nonlinear electrodynamics coupled to general relativity. Class. Quant. Grav., 21:4417–4429, 2004.
- Regular black holes in quadratic gravity. Gen. Rel. Grav., 38:885–906, 2006.
- Regular black hole metrics and the weak energy condition. Phys. Lett. B, 730:14–17, 2014.
- Zhong-Ying Fan. Critical phenomena of regular black holes in anti-de Sitter space-time. Eur. Phys. J. C, 77(4):266, 2017.
- K. A. Bronnikov. Nonlinear electrodynamics, regular black holes and wormholes. Int. J. Mod. Phys. D, 27(06):1841005, 2018.
- (Regular) Black holes in conformal Killing gravity coupled to nonlinear electrodynamics and scalar fields. Class. Quant. Grav., 41(5):055012, 2024.
- Stefano Ansoldi. Spherical black holes with regular center: A Review of existing models including a recent realization with Gaussian sources. In Conference on Black Holes and Naked Singularities, 2 2008.
- Regular Black Holes From Pure Gravity. 3 2024.
- A new cubic theory of gravity in five dimensions: Black hole, Birkhoff’s theorem and C-function. Class. Quant. Grav., 27:225002, 2010.
- Black Holes in Quasi-topological Gravity. JHEP, 08:067, 2010.
- Black Holes in Quartic Quasitopological Gravity. Phys. Rev. D, 85:104009, 2012.
- Quintessential Quartic Quasi-topological Quartet. JHEP, 05:134, 2017.
- Quintic quasi-topological gravity. JHEP, 04:066, 2017.
- Asymptotic safety casts its shadow. JCAP, 06:029, 2019.
- R. V. Maluf and Juliano C. S. Neves. Bardeen regular black hole as a quantum-corrected Schwarzschild black hole. Int. J. Mod. Phys. D, 28(03):1950048, 2018.
- Quantum Corrected Black Holes from String T-Duality. Phys. Lett. B, 797:134888, 2019.
- Bardeen spacetime as a quantum corrected Schwarzschild black hole: Quasinormal modes and Hawking radiation. Phys. Rev. D, 108(10):104054, 2023.
- R. A. Konoplya. Quasinormal modes and grey-body factors of regular black holes with a scalar hair from the Effective Field Theory. JCAP, 07:001, 2023.
- Quasinormal Modes of Bardeen Black Hole: Scalar Perturbations. Phys. Rev. D, 86:064039, 2012.
- Antonino Flachi and José P. S. Lemos. Quasinormal modes of regular black holes. Phys. Rev. D, 87(2):024034, 2013.
- Relaxations of perturbations of spacetimes in general relativity coupled to nonlinear electrodynamics. Phys. Rev. D, 99(6):064043, 2019.
- N. Breton and L. A. Lopez. Quasinormal modes of nonlinear electromagnetic black holes from unstable null geodesics. Phys. Rev. D, 94(10):104008, 2016.
- Exploring nonsingular black holes in gravitational perturbations. Phys. Rev. D, 102(12):124011, 2020.
- Quasinormal modes of a regular black hole with sub-Planckian curvature, arXiv: 2402.15085. 2 2024.
- S. V. Bolokhov. Long-lived quasinormal modes and oscillatory tails of the Bardeen spacetime. Phys. Rev. D, 109(6):064017, 2024.
- B. P. Abbott et al. Observation of Gravitational Waves from a Binary Black Hole Merger. Phys. Rev. Lett., 116(6):061102, 2016.
- R. A. Konoplya and A. Zhidenko. Quasinormal modes of black holes: From astrophysics to string theory. Rev. Mod. Phys., 83:793–836, 2011.
- R. A. Konoplya and A. Zhidenko. First few overtones probe the event horizon geometry, arXiv: 2209.00679. 9 2022.
- R. A. Konoplya. The sound of the event horizon. Int. J. Mod. Phys. D, 32(14):2342014, 2023.
- Quasinormal modes of quantum-corrected black holes, arXiv: 2312.17639. 12 2023.
- S. V. Bolokhov. Long-lived quasinormal modes and overtones’ behavior of the holonomy corrected black holes, arXiv: 2311.05503. 11 2023.
- R. A. Konoplya and A. Zhidenko. Overtones’ outburst of asymptotically AdS black holes. Phys. Rev. D, 109(4):043014, 2024.
- Quasinormal modes of renormalization group improved Dymnikova regular black holes. Phys. Rev. D, 107(10):104050, 2023.
- R. A. Konoplya. Quasinormal modes in higher-derivative gravity: Testing the black hole parametrization and sensitivity of overtones. Phys. Rev. D, 107(6):064039, 2023.
- Quantization of the electromagnetic field outside static black holes and its application to low-energy phenomena. Phys. Rev. D, 63:124008, 2001. [Erratum: Phys.Rev.D 80, 029906 (2009)].
- A. Lopez-Ortega. Electromagnetic quasinormal modes of D-dimensional black holes. Gen. Rel. Grav., 38:1747–1770, 2006.
- BLACK HOLE NORMAL MODES: A SEMIANALYTIC APPROACH. Astrophys. J. Lett., 291:L33–L36, 1985.
- Black Hole Normal Modes: A WKB Approach. 1. Foundations and Application of a Higher Order WKB Analysis of Potential Barrier Scattering. Phys. Rev. D, 35:3621, 1987.
- R. A. Konoplya. Quasinormal behavior of the d-dimensional Schwarzschild black hole and higher order WKB approach. Phys. Rev. D, 68:024018, 2003.
- Quasinormal modes of black holes. The improved semianalytic approach. Phys. Rev. D, 96(2):024011, 2017.
- Higher order WKB formula for quasinormal modes and grey-body factors: recipes for quick and accurate calculations. Class. Quant. Grav., 36:155002, 2019.
- Late time behavior of stellar collapse and explosions: 1. Linearized perturbations. Phys. Rev. D, 49:883–889, 1994.
- E. W. Leaver. An Analytic representation for the quasi normal modes of Kerr black holes. Proc. Roy. Soc. Lond. A, 402:285–298, 1985.
- Hans-Peter Nollert. Quasinormal modes of Schwarzschild black holes: The determination of quasinormal frequencies with very large imaginary parts. Phys. Rev. D, 47:5253–5258, 1993.
- Alexander Zhidenko. Massive scalar field quasi-normal modes of higher dimensional black holes. Phys. Rev. D, 74:064017, 2006.
- Andrzej Rostworowski. Quasinormal frequencies of D-dimensional Schwarzschild black holes: Evaluation via continued fraction method. Acta Phys. Polon. B, 38:81–89, 2007.
- Late time tails of wave propagation in higher dimensional space-times. Phys. Rev. D, 68:061503, 2003.
- Antonina F. Zinhailo. Exploring unique quasinormal modes of a massive scalar field in brane-world scenarios, 2024.
- Alexey Dubinsky. Telling late-time tails for a massive scalar field in the background of brane-localized black holes, arXiv:2403.01883. 3 2024.
- R. A. Konoplya. Two Regimes of Asymptotic Fall-off of a Massive Scalar Field in the Schwarzschild-de Sitter Spacetime, arXiv: 2401.17106. 1 2024.
Sponsor
Paper Prompts
Sign up for free to create and run prompts on this paper using GPT-5.
Top Community Prompts
Collections
Sign up for free to add this paper to one or more collections.