Papers
Topics
Authors
Recent
2000 character limit reached

Online Adaptation of Sampling-Based Motion Planning with Inaccurate Models (2403.07638v1)

Published 12 Mar 2024 in cs.RO

Abstract: Robotic manipulation relies on analytical or learned models to simulate the system dynamics. These models are often inaccurate and based on offline information, so that the robot planner is unable to cope with mismatches between the expected and the actual behavior of the system (e.g., the presence of an unexpected obstacle). In these situations, the robot should use information gathered online to correct its planning strategy and adapt to the actual system response. We propose a sampling-based motion planning approach that uses an estimate of the model error and online observations to correct the planning strategy at each new replanning. Our approach adapts the cost function and the sampling bias of a kinodynamic motion planner when the outcome of the executed transitions is different from the expected one (e.g., when the robot unexpectedly collides with an obstacle) so that future trajectories will avoid unreliable motions. To infer the properties of a new transition, we introduce the notion of context-awareness, i.e., we store local environment information for each executed transition and avoid new transitions with context similar to previous unreliable ones. This is helpful for leveraging online information even if the simulated transitions are far (in the state-and-action space) from the executed ones. Simulation and experimental results show that the proposed approach increases the success rate in execution and reduces the number of replannings needed to reach the goal.

Definition Search Book Streamline Icon: https://streamlinehq.com
References (34)
  1. M. Lippi, P. Poklukar, M. C. Welle, A. Varava, H. Yin, A. Marino, and D. Kragic, “Enabling visual action planning for object manipulation through latent space roadmap,” IEEE Transactions on Robotics, vol. 39, pp. 57–75, 2023.
  2. G. Nicola, E. Villagrossi, and N. Pedrocchi, “Co-manipulation of soft-materials estimating deformation from depth images,” Robotics and Computer-Integrated Manufacturing, vol. 85, p. 102630, 2024.
  3. P. Mitrano, D. McConachie, and D. Berenson, “Learning where to trust unreliable models in an unstructured world for deformable object manipulation,” Science Robotics, vol. 6, no. 54, 2021.
  4. X. Lin, C. Qi, Y. Zhang, Z. Huang, K. Fragkiadaki, Y. Li, C. Gan, and D. Held, “Planning with spatial-temporal abstraction from point clouds for deformable object manipulation,” in Conference on Robot Learning, 2022.
  5. P. Mitrano, A. LaGrassa, O. Kroemer, and D. Berenson, “Focused adaptation of dynamics models for deformable object manipulation,” Robotics: Science and Systems, 2022.
  6. J. Liu, Y. Chen, Z. Dong, S. Wang, S. Calinon, M. Li, and F. Chen, “Robot cooking with stir-fry: Bimanual non-prehensile manipulation of semi-fluid objects,” IEEE Robotics and Automation Letters, vol. 7, no. 2, pp. 5159–5166, 2022.
  7. Z. Sun, Z. Wang, J. Liu, M. Li, and F. Chen, “Mixline: A hybrid reinforcement learning framework for long-horizon bimanual coffee stirring task,” in International Conference on Intelligent Robotics and Applications, 2022, pp. 627–636.
  8. J. Liang, X. Cheng, and O. Kroemer, “Learning preconditions of hybrid force-velocity controllers for contact-rich manipulation,” in Conference on Robot Learning, 2022.
  9. E. Páll, A. Sieverling, and O. Brock, “Contingent contact-based motion planning,” in IEEE/RSJ International Conference on Intelligent Robots and Systems, 2018, pp. 6615–6621.
  10. M.-T. Khoury, A. Orthey, and M. Toussaint, “Efficient sampling of transition constraints for motion planning under sliding contacts,” in IEEE International Conference on Automation Science and Engineering, 2021, pp. 1547–1553.
  11. A. V. Vivas, A. Cherubini, M. Garabini, P. Salaris, and A. Bicchi, “Minimizing energy consumption of elastic robots in repetitive tasks,” IEEE Transactions on Systems, Man, and Cybernetics: Systems, 2023.
  12. T. Marcucci, M. Garabini, G. M. Gasparri, A. Artoni, M. Gabiccini, and A. Bicchi, “Parametric trajectory libraries for online motion planning with application to soft robots,” in International Symposium on Robotics Research.   Springer, 2020, pp. 1001–1017.
  13. A. Bry and N. Roy, “Rapidly-exploring random belief trees for motion planning under uncertainty,” in IEEE International Conference on Robotics and Automation, 2011, pp. 723–730.
  14. J. Van Den Berg, S. Patil, and R. Alterovitz, “Motion planning under uncertainty using differential dynamic programming in belief space,” in The International Symposium of Robotics Research, 2017, pp. 473–490.
  15. A. Vemula, Y. Oza, J. A. Bagnell, and M. Likhachev, “Planning and execution using inaccurate models with provable guarantees,” in Robotics: Science and Systems, 2016.
  16. A. Vemula, J. A. Bagnell, and M. Likhachev, “Cmax++: Leveraging experience in planning and execution using inaccurate models,” in AAAI Conference on Artificial Intelligence, 2021, pp. 6147–6155.
  17. S. Zhong, Z. Zhang, N. Fazeli, and D. Berenson, “Tampc: A controller for escaping traps in novel environments,” IEEE Robotics and Automation Letters, vol. 6, no. 2, pp. 1447–1454, 2021.
  18. M. Faroni and D. Berenson, “Motion planning as online learning: A multi-armed bandit approach to kinodynamic sampling-based planning,” IEEE Robotics and Automation Letters, vol. 8, no. 10, pp. 6651–6658, 2023.
  19. S. M. LaValle and J. James J. Kuffner, “Randomized kinodynamic planning,” The International Journal of Robotics Research, vol. 20, no. 5, pp. 378–400, 2001.
  20. L. E. Kavraki, P. Svestka, J. . Latombe, and M. H. Overmars, “Probabilistic roadmaps for path planning in high-dimensional configuration spaces,” IEEE Transactions on Robotics and Automation, vol. 12, no. 4, pp. 566–580, 1996.
  21. Q. H. Ho, Z. N. Sunberg, and M. Lahijanian, “Gaussian belief trees for chance constrained asymptotically optimal motion planning,” in IEEE International Conference on Robotics and Automation, 2022, pp. 11 029–11 035.
  22. A. Wu, T. Lew, K. Solovey, E. Schmerling, and M. Pavone, “Robust-rrt: Probabilistically-complete motion planning for uncertain nonlinear systems,” in The International Symposium of Robotics Research.   Springer, 2022, pp. 538–554.
  23. C. Knuth, G. Chou, N. Ozay, and D. Berenson, “Planning with learned dynamics: Probabilistic guarantees on safety and reachability via lipschitz constants,” IEEE Robotics and Automation Letters, vol. 6, no. 3, pp. 5129–5136, 2021.
  24. W. Sun, S. Patil, and R. Alterovitz, “High-frequency replanning under uncertainty using parallel sampling-based motion planning,” IEEE Transactions on Robotics, vol. 31, no. 1, pp. 104–116, 2015.
  25. C. Tonola, M. Faroni, M. Beschi, and N. Pedrocchi, “Anytime informed multi-path replanning strategy for complex environments,” IEEE Access, vol. 11, pp. 4105–4116, 2023.
  26. J. D. Gammell and M. P. Strub, “Asymptotically optimal sampling-based motion planning methods,” Annual Review of Control, Robotics, and Autonomous Systems, vol. 4, pp. 295–318, 2021.
  27. N. M. Amato, O. B. Bayazit, L. K. Dale, C. Jones, and D. Vallejo, “Obprm: An obstacle-based prm for 3d workspaces,” in International Workshop on Algorithmic Foundations of Robotics, 1998, pp. 155–168.
  28. A. Attali, S. Ashur, I. B. Love, C. McBeth, J. Motes, D. Uwacu, M. Morales, and N. M. Amato, “Evaluating guiding spaces for motion planning,” 2022.
  29. B. Ichter, J. Harrison, and M. Pavone, “Learning sampling distributions for robot motion planning,” in IEEE International Conference on Robotics and Automation, 2018, pp. 7087–7094.
  30. R. Cheng, K. Shankar, and J. W. Burdick, “Learning an optimal sampling distribution for efficient motion planning,” in IEEE/RSJ International Conference on Intelligent Robots and Systems, 2020.
  31. C. Chamzas, Z. Kingston, C. Quintero-Peña, A. Shrivastava, and L. E. Kavraki, “Learning sampling distributions using local 3d workspace decompositions for motion planning in high dimensions,” in IEEE International Conference on Robotics and Automation, 2021.
  32. S. Dalibard and J.-P. Laumond, “Linear dimensionality reduction in random motion planning,” The International Journal of Robotics Research, vol. 30, pp. 1461–1476, 2011.
  33. T. Dam, G. Chalvatzaki, J. Peters, and J. Pajarinen, “Monte-carlo robot path planning,” IEEE Robotics and Automation Letters, vol. 7, no. 4, pp. 11 213–11 220, 2022.
  34. O. Arslan and P. Tsiotras, “Machine learning guided exploration for sampling-based motion planning algorithms,” in IEEE/RSJ International Conference on Intelligent Robots and Systems, 2015, pp. 2646–2652.

Summary

We haven't generated a summary for this paper yet.

Slide Deck Streamline Icon: https://streamlinehq.com

Whiteboard

Dice Question Streamline Icon: https://streamlinehq.com

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.