2000 character limit reached
Integrable systems and cluster algebras (2403.07287v1)
Published 12 Mar 2024 in nlin.SI, math-ph, math.CO, and math.MP
Abstract: We review several constructions of integrable systems with an underlying cluster algebra structure, in particular the Gekhtman-Shapiro-Tabachnikov-Vainshtein construction based on perfect networks and the Goncharov-Kenyon approach based on the dimer model. We also discuss results of Galashin and Pylyavskyy on integrability of T-systems.
- Vector-relation configurations and plabic graphs. Selecta Math., 30(1):9, 2024.
- Noncommutative networks on a cylinder. arXiv:2008.02889, 2020.
- Algebraic entropy. Comm. Math. Phys., 204:425–437, 1999.
- Cluster integrable systems, q-Painlevé equations and their quantization. J. High Energy Phys., 2018(2), 2018.
- L. Chekhov and M. Shapiro. Darboux coordinates for symplectic groupoid and cluster algebras. arXiv:2003.07499, 2020.
- P. Di Francesco and R. Kedem. Q𝑄Qitalic_Q-systems, heaps, paths and cluster positivity. Comm. Math. Phys., 293(3):727–802, 2010.
- Hamiltonian methods in the theory of solitons. Springer, 1987.
- R. Felipe and G. Marí Beffa. The pentagram map on Grassmannians. Ann. Inst. Fourier, 69(1):421–456, 2019.
- V. Fock and A. Goncharov. Cluster ensembles, quantization and the dilogarithm. Ann. Sci. Éc. Norm. Supér., 42(6):865–930, 2009.
- V.V. Fock and A. Marshakov. Loop groups, clusters, dimers and integrable systems. In Geometry and quantization of moduli spaces, pages 1–65. Springer, 2016.
- Introduction to cluster algebras. arXiv:1608.05735, arXiv:1707.07190, arXiv:2008.09189,arXiv:2106.02160.
- S. Fomin and A. Zelevinsky. Cluster algebras I: Foundations. J. Amer. Math. Soc., 15(2):497–529, 2002.
- S. Fomin and A. Zelevinsky. Cluster algebras IV: Coefficients. Comp. Math., 143:112–164, 2007.
- A. Fordy and A. Hone. Discrete integrable systems and Poisson algebras from cluster maps. Comm. Math. Phys., 325:527–584, 2014.
- A. Fordy and R.J. Marsh. Cluster mutation-periodic quivers and associated Laurent sequences. J. Algebraic Combin., 34:19–66, 2011.
- P. Galashin and P. Pylyavskyy. The classification of Zamolodchikov periodic quivers. Amer. J. Math., 141(2):447–484, 2019.
- P. Galashin and P. Pylyavskyy. Quivers with additive labelings: classification and algebraic entropy. Doc. Math., 24:2057–2135, 2019.
- P. Galashin and P. Pylyavskyy. Quivers with subadditive labelings: classification and integrability. Math. Z., 295(3-4):945–992, 2020.
- Integrable cluster dynamics of directed networks and pentagram maps. Adv. Math., 300:390–450, 2016.
- Cluster algebras and Poisson geometry. Mosc. Math. J., 3(3):899–934, 2003.
- Poisson geometry of directed networks in a disk. Selecta Math., 15(1):61–103, 2009.
- Cluster algebras and Poisson geometry. Amer. Math. Soc., 2010.
- Generalized Bäcklund-Darboux transformations for Coxeter-Toda flows from a cluster algebra perspective. Acta Math., 206(2):245–310, 2011.
- Poisson geometry of directed networks in an annulus. J. Eur. Math. Soc., 14(2):541–570, 2012.
- T. George and G. Inchiostro. The cluster modular group of the dimer model. Ann. Inst. Henri Poincaré D, 11(1), 2024.
- T. George and S. Ramassamy. Discrete dynamics in cluster integrable systems from geometric R𝑅Ritalic_R-matrix transformations. Comb. Th., 3(2), 2023.
- M. Glick. The pentagram map and Y-patterns. Adv. Math., 227(2):1019–1045, 2011.
- M. Glick and P. Pylyavskyy. Y-meshes and generalized pentagram maps. Proc. Lond. Math. Soc., 112(4):753–797, 2016.
- A.B. Goncharov and R. Kenyon. Dimers and cluster integrable systems. Ann. Sci. Éc. Norm. Supér., 46(5):747–813, 2013.
- A. Hone and R. Inoue. Discrete Painlevé equations from Y-systems. J. Phys. A, 47(47):474007, 2014.
- Periodicities of T-systems and Y-systems, dilogarithm identities, and cluster algebras I: type Brsubscript𝐵𝑟B_{r}italic_B start_POSTSUBSCRIPT italic_r end_POSTSUBSCRIPT. Publ. Res. Inst. Math. Sci., 49(1):1–42, 2013.
- A. Izosimov. Dimers, networks, and cluster integrable systems. Geom. Funct. Anal., 32(4):861–880, 2022.
- A. Izosimov. Pentagram maps and refactorization in Poisson-Lie groups. Adv. Math., 404:108476, 2022.
- R. Kedem. Q𝑄Qitalic_Q-systems as cluster algebras. J. Phys. A, 41(19):194011, 14, 2008.
- B. Khesin and F. Soloviev. Integrability of higher pentagram maps. Math. Ann., 357(3):1005–1047, 2013.
- B. Khesin and F. Soloviev. The geometry of dented pentagram maps. J. Eur. Math. Soc., 18(1):147–179, 2015.
- Y. Kodama and L. Williams. KP solitons, total positivity, and cluster algebras. Proc. Natl. Acad. Sci. USA, 108(22):8984–8989, 2011.
- Y. Kodama and L. Williams. KP solitons and total positivity for the Grassmannian. Invent. Math., 198:637–699, 2014.
- B.R. Marsh. Lecture notes on cluster algebras. Zurich lectures in Advanced Mathematics, 2014.
- T. Nakanishi. Periodicities in cluster algebras and dilogarithm identities. In Representations of algebras and related topics, EMS Series of Congress Reports. European Mathematical Society, 2011.
- T. Nakanishi. Cluster algebras and scattering diagrams, volume 41 of MSJ Memoirs. 2023.
- N. Okubo. Discrete integrable systems and cluster algebras. RIMS Kôkyûroku Bessatsu, B41:25–42, 2013.
- N. Okubo and T. Suzuki. Generalized q-Painlevé VI systems of type (A2n+1+A1+A1)(1)superscriptsubscript𝐴2𝑛1subscript𝐴1subscript𝐴11(A_{2n+1}+A_{1}+A_{1})^{(1)}( italic_A start_POSTSUBSCRIPT 2 italic_n + 1 end_POSTSUBSCRIPT + italic_A start_POSTSUBSCRIPT 1 end_POSTSUBSCRIPT + italic_A start_POSTSUBSCRIPT 1 end_POSTSUBSCRIPT ) start_POSTSUPERSCRIPT ( 1 ) end_POSTSUPERSCRIPT arising from cluster algebra. Int. Math. Res. Not., 2022(9):6561–6607, 2022.
- N. Ovenhouse. Non-commutative integrability of the Grassmann pentagram map. Adv. Math., 373:107309, 2020.
- The pentagram map: a discrete integrable system. Comm. Math. Phys., 299(2):409–446, 2010.
- Liouville -Arnold integrability of the pentagram map on closed polygons. Duke Math. J., 162(12):2149–2198, 2013.
- A. Postnikov. Total positivity, Grassmannians, and networks. arXiv:math/0609764, 2006.
- G. Schrader and A. Shapiro. Continuous tensor categories from quantum groups I: algebraic aspects. arXiv:1708.08107, 2017.
- R. Schwartz. The pentagram map. Exp. Math., 1(1):71–81, 1992.
- M. Semenov-Tian-Shansky. Integrable systems: The r-matrix approach. RIMS-1650. Research Institute for Mathematical Sciences, Kyoto University, Kyoto, Japan, 2008.
- F. Soloviev. Integrability of the pentagram map. Duke Math. J., 162(15):2815–2853, 2013.
- M. Van den Bergh. Double Poisson algebras. Trans. Amer. Math. Soc., 360(11):5711–5769, 2008.
- P. Vanhaecke. Integrable systems in the realm of algebraic geometry, 2nd edition. Springer Lecture Notes in Mathematics, 1638, 2001.
- H. Williams. Double Bruhat cells in Kac-Moody groups and integrable systems. Lett. Math. Phys., 103(4):389–419, 2013.
Paper Prompts
Sign up for free to create and run prompts on this paper using GPT-5.
Top Community Prompts
Collections
Sign up for free to add this paper to one or more collections.