Papers
Topics
Authors
Recent
Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 134 tok/s
Gemini 2.5 Pro 41 tok/s Pro
GPT-5 Medium 27 tok/s Pro
GPT-5 High 27 tok/s Pro
GPT-4o 84 tok/s Pro
Kimi K2 174 tok/s Pro
GPT OSS 120B 430 tok/s Pro
Claude Sonnet 4.5 37 tok/s Pro
2000 character limit reached

Zig-zag Eulerian polynomials (2403.07181v4)

Published 11 Mar 2024 in math.CO

Abstract: For any finite partially ordered set $P$, the $P$-Eulerian polynomial is the generating function for the descent number over the set of linear extensions of $P$, and is closely related to the order polynomial of $P$ arising in the theory of $P$-partitions. Here we study the $P$-Eulerian polynomial where $P$ is a naturally labeled zig-zag poset; we call these zig-zag Eulerian polynomials. A result of Br\"and\'en implies that these polynomials are gamma-nonnegative, and hence their coefficients are symmetric and unimodal. The zig-zag Eulerian polynomials and the associated order polynomials have appeared fleetingly in the literature in a wide variety of contexts$\unicode{x2014}$e.g., in the study of polytopes, magic labelings of graphs, and Kekul\'e structures$\unicode{x2014}$but they do not appear to have been studied systematically. In this paper, we use a "relaxed" version of $P$-partitions to both survey and unify results. Our technique shows that the zig-zag Eulerian polynomials also capture the distribution of "big returns" over the set of (up-down) alternating permutations, as first observed by Coons and Sullivant. We develop recurrences for refined versions of the relevant generating functions, which evoke similarities to recurrences for the classical Eulerian polynomials. We conclude with a literature survey and open questions.

Citations (1)

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Don't miss out on important new AI/ML research

See which papers are being discussed right now on X, Reddit, and more:

“Emergent Mind helps me see which AI papers have caught fire online.”

Philip

Philip

Creator, AI Explained on YouTube