Papers
Topics
Authors
Recent
Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 147 tok/s
Gemini 2.5 Pro 52 tok/s Pro
GPT-5 Medium 27 tok/s Pro
GPT-5 High 30 tok/s Pro
GPT-4o 96 tok/s Pro
Kimi K2 188 tok/s Pro
GPT OSS 120B 398 tok/s Pro
Claude Sonnet 4.5 36 tok/s Pro
2000 character limit reached

Interpreting What Typical Fault Signals Look Like via Prototype-matching (2403.07033v1)

Published 11 Mar 2024 in cs.LG and cs.AI

Abstract: Neural networks, with powerful nonlinear mapping and classification capabilities, are widely applied in mechanical fault diagnosis to ensure safety. However, being typical black-box models, their application is limited in high-reliability-required scenarios. To understand the classification logic and explain what typical fault signals look like, the prototype matching network (PMN) is proposed by combining the human-inherent prototype-matching with autoencoder (AE). The PMN matches AE-extracted feature with each prototype and selects the most similar prototype as the prediction result. It has three interpreting paths on classification logic, fault prototypes, and matching contributions. Conventional diagnosis and domain generalization experiments demonstrate its competitive diagnostic performance and distinguished advantages in representation learning. Besides, the learned typical fault signals (i.e., sample-level prototypes) showcase the ability for denoising and extracting subtle key features that experts find challenging to capture. This ability broadens human understanding and provides a promising solution from interpretability research to AI-for-Science.

Definition Search Book Streamline Icon: https://streamlinehq.com
References (30)
  1. doi:10.1016/j.ymssp.2019.106587.
  2. doi:10.1016/j.isatra.2020.08.010.
  3. doi:10.1073/pnas.2106598119.
  4. doi:10.1109/TII.2021.3125385.
  5. doi:10.1109/TII.2021.3126111.
  6. doi:10.1016/j.patrec.2021.06.030.
  7. doi:10.1145/3546577.
  8. doi:10.1109/TETCI.2021.3100641.
  9. doi:10.1016/j.ymssp.2020.107327.
  10. doi:10.1109/JSEN.2019.2958787.
  11. doi:10.1016/j.ymssp.2023.110952.
  12. doi:10.1109/TIM.2022.3169528.
  13. doi:10.1016/j.jmsy.2023.05.027.
  14. doi:10.1609/aaai.v32i1.11771.
  15. doi:10.1016/j.compind.2020.103331.
  16. doi:10.1007/s10845-021-01904-x.
  17. doi:10.1016/j.asoc.2022.109120.
  18. doi:10.1109/TII.2022.3154486.
  19. doi:10.1007/s10846-023-02025-8.
  20. doi:10.1007/s10845-020-01709-4.
  21. doi:10.1016/j.aei.2022.101815.
  22. doi:10.1016/j.measurement.2023.113065.
  23. doi:10.1016/j.neucom.2023.126656.
  24. doi:10.1007/s10845-023-02237-7.
  25. doi:10.1109/TIM.2022.3222494.
  26. doi:10.1007/s10845-023-02123-2.
  27. doi:10.1016/j.apacoust.2023.109749.
  28. doi:10.1016/j.knosys.2023.111093.
  29. doi:10.1109/TMECH.2021.3058061.
  30. doi:10.1109/ICCV.2017.74.
Citations (1)

Summary

We haven't generated a summary for this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

X Twitter Logo Streamline Icon: https://streamlinehq.com

Tweets

This paper has been mentioned in 2 tweets and received 0 likes.

Upgrade to Pro to view all of the tweets about this paper: