Ground-state chiral current via periodic modulation (2403.06688v2)
Abstract: In this study, we engineer the Dzyaloshinskii-Moriya interaction mediated by photons to emulate ground-state chiral current based on three-level atoms driven by quantum and classical fields. We employ adiabatic elimination techniques to derive an effective Dzyaloshinskii-Moriya interaction Hamiltonian of two-level systems, which can address the challenges arising from the finite lifetime of excited states. Furthermore, we can ensure to achieve desired dynamics through the implementation of periodic modulation on the atomic ground states. Besides, three-state and multi-state chiral current can be obtained by choosing appropriate driving frequencies and phases. We also design the Dzyaloshinskii-Moriya interaction for the other components based on a toggling frame. The numerical simulation results further indicate that our proposal can generate a perfectly reliable ground-state chiral current and open up possibilities for quantum state transfer and the development of future quantum networks.
- A. André, L.-M. Duan, and M. D. Lukin, Coherent atom interactions mediated by dark-state polaritons, Phys. Rev. Lett. 88, 243602 (2002).
- A. S. Sørensen and K. Mølmer, Entangling atoms in bad cavities, Phys. Rev. A 66, 022314 (2002).
- M. H. Schleier-Smith, I. D. Leroux, and V. Vuletić, Squeezing the collective spin of a dilute atomic ensemble by cavity feedback, Phys. Rev. A 81, 021804 (2010).
- M. Morgado and S. Whitlock, Quantum simulation and computing with Rydberg-interacting qubits, AVS Quantum Science 3, 023501 (2021).
- S. J. Masson, M. D. Barrett, and S. Parkins, Cavity QED engineering of spin dynamics and squeezing in a spinor gas, Phys. Rev. Lett. 119, 213601 (2017).
- I. D. Leroux, M. H. Schleier-Smith, and V. Vuletić, Implementation of cavity squeezing of a collective atomic spin, Phys. Rev. Lett. 104, 073602 (2010).
- T. Moriya, New mechanism of anisotropic superexchange interaction, Phys. Rev. Lett. 4, 228 (1960a).
- T. Moriya, Anisotropic superexchange interaction and weak ferromagnetism, Phys. Rev. 120, 91 (1960b).
- M. Haze, Y. Yoshida, and Y. Hasegawa, Experimental verification of the rotational type of chiral spin spiral structures by spin-polarized scanning tunneling microscopy, Scientific Reports 7, 13269 (2017).
- S. Fujimoto, Hall effect of spin waves in frustrated magnets, Phys. Rev. Lett. 103, 047203 (2009).
- N. Mohanta, E. Dagotto, and S. Okamoto, Topological hall effect and emergent skyrmion crystal at manganite-iridate oxide interfaces, Phys. Rev. B 100, 064429 (2019).
- X. G. Wen, F. Wilczek, and A. Zee, Chiral spin states and superconductivity, Phys. Rev. B 39, 11413 (1989).
- S.-f. Qi and J. Jing, Chiral current in floquet cavity magnonics, Phys. Rev. A 106, 033711 (2022).
- Y. Maleki, C. Zhou, and M. S. Zubairy, Time-reversal-symmetry breaking in a scalable cavity QED lattice, Phys. Rev. A 108, 063709 (2023).
- Y. Zhou, K. Kanoda, and T.-K. Ng, Quantum spin liquid states, Rev. Mod. Phys. 89, 025003 (2017).
- N. Nagaosa and Y. Tokura, Topological properties and dynamics of magnetic skyrmions, Nature Nanotechnology 8, 899 (2013).
- N. Goldman and J. Dalibard, Periodically driven quantum systems: Effective hamiltonians and engineered gauge fields, Phys. Rev. X 4, 031027 (2014).
- J. H. Shirley, Solution of the schrödinger equation with a hamiltonian periodic in time, Phys. Rev. 138, B979 (1965).
- M. Reitz and C. Genes, Floquet engineering of molecular dynamics via infrared coupling, The Journal of Chemical Physics 153, 234305 (2020).
- V. Novičenko, G. Žlabys, and E. Anisimovas, Flow-equation approach to quantum systems driven by an amplitude-modulated time-periodic force, Phys. Rev. A 105, 012203 (2022).
- E. Brion, L. H. Pedersen, and K. Mølmer, Adiabatic elimination in a lambda system, Journal of Physics A: Mathematical and Theoretical 40, 1033 (2007).
- C. Gonzalez-Ballestero, Tutorial: projector approach to open quantum systems (2023), arXiv:2305.19704 [quant-ph] .
- W. Shao, C. Wu, and X.-L. Feng, Generalized james’ effective hamiltonian method, Phys. Rev. A 95, 032124 (2017).
- A. Brinkmann, Introduction to average hamiltonian theory. i. basics, Concepts in Magnetic Resonance Part A 45A, e21414 (2016).
- D. Layden, First-order trotter error from a second-order perspective, Phys. Rev. Lett. 128, 210501 (2022).
- O. Kyriienko and A. S. Sørensen, Floquet quantum simulation with superconducting qubits, Phys. Rev. Appl. 9, 064029 (2018).
- M. Sameti and M. J. Hartmann, Floquet engineering in superconducting circuits: From arbitrary spin-spin interactions to the Kitaev honeycomb model, Phys. Rev. A 99, 012333 (2019).
Paper Prompts
Sign up for free to create and run prompts on this paper using GPT-5.
Top Community Prompts
Collections
Sign up for free to add this paper to one or more collections.