Papers
Topics
Authors
Recent
2000 character limit reached

Thermalization in Krylov Basis (2403.06655v3)

Published 11 Mar 2024 in quant-ph, cond-mat.other, and hep-th

Abstract: We study thermalization in closed non-integrable quantum systems using the Krylov basis. We demonstrate that for thermalization to occur, the matrix representation of typical local operators in the Krylov basis should exhibit a specific tridiagonal form with all other elements in the matrix are exponentially small, reminiscent of the eigenstate thermalization hypothesis. Within this framework, we propose that the nature of thermalization, whether weak or strong, can be examined by the infinite time average of the Krylov complexity. Moreover, we analyze the variance of Lanczos coefficients as another probe for the nature of thermalization. One observes that although the variance of Lanczos coefficients may capture certain features of thermalization, it is not as effective as the infinite time average of complexity.

Definition Search Book Streamline Icon: https://streamlinehq.com
References (29)
  1. M. Srednicki, “Chaos and Quantum Thermalization,” Phys. Rev. E 50, 888 doi:10.1103/PhysRevE.50.888 [arXiv:cond-mat/9403051 [cond-mat]].
  2. Deutsch JM. Quantum statistical mechanics in a closed system. Phys Rev A. 43 (1991) 2046 doi:10.1103/physreva.43.2046
  3. M. C. Bañuls, J. I. Cirac and M. B. Hastings, “Strong and Weak Thermalization of Infinite Nonintegrable Quantum Systems,” Phys. Rev. Lett. 106 (2011) no.5, 050405 doi:10.1103/PhysRevLett.106.050405
  4. Z. H. Sun, J. Cui and H. Fan, “Quantum information scrambling in the presence of weak and strong thermalization,” Phys. Rev. A 104 (2021) no.2, 022405 doi:10.1103/PhysRevA.104.022405 [arXiv:2008.01477 [quant-ph]].
  5. F. Chen, et al, “Observation of Strong and Weak Thermalization in a Superconducting Quantum Processor,” Phys. Rev. Lett. 127 (2021) 020602, doi:10.1103/PhysRevLett.127.020602
  6. C. J. Lin and O. I. Motrunich, “Quasiparticle explanation of the weak-thermalization regime under quench in a nonintegrable quantum spin chain,” Phys. Rev. A 95 (2017) no.2, 023621 doi:10.1103/PhysRevA.95.023621 [arXiv:1610.04287 [cond-mat.stat-mech]].
  7. O. Bohigas, M. J. Giannoni and C. Schmit, “Characterization of chaotic quantum spectra and universality of level fluctuation laws,” Phys. Rev. Lett. 52 (1984), 1-4 doi:10.1103/PhysRevLett.52.1
  8. M.  Srednicki, “The approach to thermal equilibrium in quantized chaotic systems,” Journal of Physics A: Mathematical and General, (1999) 1163
  9. I. Dumitriu and A. Edelman, “Matrix models for beta ensembles,” arXiv:math-ph/0206043
  10. V. Balasubramanian, J. M. Magan and Q. Wu, “Tridiagonalizing random matrices,” Phys. Rev. D 107 (2023) no.12, 126001 doi:10.1103/PhysRevD.107.126001 [arXiv:2208.08452 [hep-th]].
  11. V. Balasubramanian, J. M. Magan and Q. Wu, “Quantum chaos, integrability, and late times in the Krylov basis,” [arXiv:2312.03848 [hep-th]].
  12. D. E. Parker, X. Cao, A. Avdoshkin, T. Scaffidi and E. Altman, “A Universal Operator Growth Hypothesis,” Phys. Rev. X 9 (2019) no.4, 041017 doi:10.1103/PhysRevX.9.041017 [arXiv:1812.08657 [cond-mat.stat-mech]].
  13. J. L. F. Barbón, E. Rabinovici, R. Shir and R. Sinha, “On The Evolution Of Operator Complexity Beyond Scrambling,” JHEP 10 (2019), 264 doi:10.1007/JHEP10(2019)264 [arXiv:1907.05393 [hep-th]].
  14. V. S. Viswanath and G. Mülle, “The Recursion Method: Application to Many Body Dynamics,” Lecture Notes in Physics Monographs (1994), Springer Berlin Heidelberg
  15. C. Lanczos, “An iteration method for the solution of the eigenvalue problem of linear differential and integral operators,” J. Res. Natl. Bur. Stand. B 45 (1950), 255-282 doi:10.6028/jres.045.026
  16. Work in progress.
  17. E. Rabinovici, A. Sánchez-Garrido, R. Shir and J. Sonner, “Operator complexity: a journey to the edge of Krylov space,” JHEP 06 (2021), 062 doi:10.1007/JHEP06(2021)062 [arXiv:2009.01862 [hep-th]].
  18. P. Caputa, H. S. Jeong, S. Liu, J. F. Pedraza and L. C. Qu, “Krylov complexity of density matrix operators,” [arXiv:2402.09522 [hep-th]].
  19. E. Rabinovici, A. Sánchez-Garrido, R. Shir and J. Sonner, “Krylov complexity from integrability to chaos,” JHEP 07 (2022), 151 doi:10.1007/JHEP07(2022)151 [arXiv:2207.07701 [hep-th]].
  20. J. D.  Noh, “Operator growth in the transverse-field Ising spin chain with integrability-breaking longitudinal field,” arXiv:2107.08287.
  21. B. L. Español and D. A. Wisniacki, “Assessing the saturation of Krylov complexity as a measure of chaos,” Phys. Rev. E 107 (2023) no.2, 024217 doi:10.1103/PhysRevE.107.024217 [arXiv:2212.06619 [quant-ph]].
  22. F. B. Trigueros and C. J. Lin, “Krylov complexity of many-body localization: Operator localization in Krylov basis,” SciPost Phys. 13 (2022) no.2, 037 doi:10.21468/SciPostPhys.13.2.037 [arXiv:2112.04722 [cond-mat.dis-nn]].
  23. G. F. Scialchi, A. J. Roncaglia and D. A. Wisniacki, “Integrability to chaos transition through Krylov approach for state evolution,” [arXiv:2309.13427 [quant-ph]].
  24. E. Rabinovici, A. Sánchez-Garrido, R. Shir and J. Sonner, “Krylov localization and suppression of complexity,” JHEP 03 (2022), 211 doi:10.1007/JHEP03(2022)211 [arXiv:2112.12128 [hep-th]].
  25. L. F. d. Prazeres and T. R. de Oliveira, “Continuous Transition Between Weak and Strong Thermalization using Rigorous Bounds on Equilibration of Isolated Systems,” [arXiv:2310.13392 [quant-ph]].
  26. A. J. Short and T. C. Farrelly, “Quantum equilibration in finite time,” New J. Phys. 14 (2012) no.1, 013063 doi:10.1088/1367-2630/14/1/013063 [arXiv:1110.5759 [quant-ph]].
  27. V. Balasubramanian, P. Caputa, J. M. Magan and Q. Wu, “Quantum chaos and the complexity of spread of states,” Phys. Rev. D 106 (2022) no.4, 046007 doi:10.1103/PhysRevD.106.046007 [arXiv:2202.06957 [hep-th]].
  28. M. Alishahiha and S. Banerjee, “A universal approach to Krylov state and operator complexities,” SciPost Phys. 15 (2023) no.3, 080 doi:10.21468/SciPostPhys.15.3.080 [arXiv:2212.10583 [hep-th]].
  29. https://turin.ipm.ir/.
Citations (3)

Summary

We haven't generated a summary for this paper yet.

Whiteboard

Paper to Video (Beta)

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Continue Learning

We haven't generated follow-up questions for this paper yet.

Collections

Sign up for free to add this paper to one or more collections.

Tweets

Sign up for free to view the 2 tweets with 0 likes about this paper.