Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
156 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
45 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Aggregated distribution grid flexibilities in subtransmission grid operational management (2403.06635v1)

Published 11 Mar 2024 in eess.SY and cs.SY

Abstract: Aggregated flexibilities or PQ-capabilities (active and reactive power capabilities) are termed in literature as Feasible Operating Regions (FORs). The FORs from underlying active distribution grids can effectively contribute to the operational management at the HV grid level. The HV buses are allocated aggregated FORs from the underlying MV grids, which are inherently nonlinear and non-convex. Therefore, two approaches are proposed in the paper to apply the FOR constraints in the HV grid operational management. First, a mixed integer linear programming (MILP) based optimization approach for alleviating the HV grid constraint violations is proposed, which addresses the non-convexity of the FOR using piecewise segmentation. Furthermore, the MILP method is enhanced to consider the influence of the HV bus voltage on the underlying MV grid flexibilities resulting in a three dimensional PQ(V)-FOR. Second, a convexification approach is proposed, which uses a convex approximation of the non-convex 3D PQ(V)-FOR shape for implementation in a linear optimization method. Results reveal a robust utilization of the distribution flexibilities to maintain grid security and reliability at the HV grid level. Comparisons present increased computation times for the MILP method which are significantly improved using the convexification based approach.

Definition Search Book Streamline Icon: https://streamlinehq.com
References (21)
  1. J. Wussow, D. Babazadeh, V. Beutel, S. Buchholz, S. Geissendörfer, J. Gerlach, N. Majumdar, K. von Maydell, A. Narayan, M. Hoffmann, et al., “Sined-ancillary services for reliable power grids in times of progressive german energiewende and digital transformation,” in ETG Congress 2021, pp. 1–6, VDE, 2021.
  2. M. R. Lotz, N. Majumdar, V. Beutel, J. Gerlach, C. Wegkamp, M. Hoffmann, L. Kahl, J. Wussow, H. Schlachter, C. Agert, et al., “Potentials and technical requirements for the provision of ancillary services in future power systems with distributed energy resources,” in NEIS 2021; Conference on Sustainable Energy Supply and Energy Storage Systems, pp. 1–8, VDE, 2021.
  3. M. Heleno, R. Soares, J. Sumaili, R. J. Bessa, L. Seca, and M. A. Matos, “Estimation of the flexibility range in the transmission-distribution boundary,” in 2015 IEEE Eindhoven PowerTech, pp. 1–6, IEEE, 2015.
  4. L. Ageeva, M. Majidi, and D. Pozo, “Analysis of feasibility region of active distribution networks,” in 2019 International Youth Conference on Radio Electronics, Electrical and Power Engineering (REEPE), pp. 1–5, IEEE, 2019.
  5. D. M. Gonzalez, J. Hachenberger, J. Hinker, F. Rewald, U. Häger, C. Rehtanz, and J. Myrzik, “Determination of the time-dependent flexibility of active distribution networks to control their tso-dso interconnection power flow,” in 2018 Power Systems Computation Conference (PSCC), pp. 1–8, IEEE, 2018.
  6. S. Riaz and P. Mancarella, “On feasibility and flexibility operating regions of virtual power plants and tso/dso interfaces,” in 2019 IEEE Milan PowerTech, pp. 1–6, IEEE, 2019.
  7. J. Silva, J. Sumaili, R. J. Bessa, L. Seca, M. A. Matos, V. Miranda, M. Caujolle, B. Goncer, and M. Sebastian-Viana, “Estimating the active and reactive power flexibility area at the tso-dso interface,” IEEE Transactions on Power Systems, vol. 33, no. 5, pp. 4741–4750, 2018.
  8. M. Rossi, G. Viganò, D. Moneta, M. T. Vespucci, and P. Pisciella, “Fast estimation of equivalent capability for active distribution networks,” CIRED-Open Access Proceedings Journal, vol. 2017, no. 1, pp. 1763–1767, 2017.
  9. D. A. Contreras and K. Rudion, “Improved assessment of the flexibility range of distribution grids using linear optimization,” in 2018 Power Systems Computation Conference (PSCC), pp. 1–7, IEEE, 2018.
  10. D. A. Contreras and K. Rudion, “Impact of grid topology and tap position changes on the flexibility provision from distribution grids,” in 2019 IEEE PES Innovative Smart Grid Technologies Europe (ISGT-Europe), pp. 1–5, IEEE, 2019.
  11. M. Sarstedt, L. Kluß, J. Gerster, T. Meldau, and L. Hofmann, “Survey and comparison of optimization-based aggregation methods for the determination of the flexibility potentials at vertical system interconnections,” Energies, vol. 14, no. 3, p. 687, 2021.
  12. Z. Wang, S. Wende-von Berg, and M. Braun, “Robust n-1 secure hv grid flexibility estimation for tso-dso coordinated congestion management with deep reinforcement learning,” in NEIS 2022; Conference on Sustainable Energy Supply and Energy Storage Systems, pp. 1–7, VDE, 2022.
  13. D. A. Contreras, S. Müller, and K. Rudion, “Congestion management using aggregated flexibility at the tso-dso interface,” in 2021 IEEE Madrid PowerTech, pp. 1–6, IEEE, 2021.
  14. PhD thesis, Dissertation, Ilmenau, Technische Universität Ilmenau, 2016, 2017.
  15. M. Sarstedt, L. Kluß, M. Dokus, L. Hofmann, and J. Gerster, “Simulation of hierarchical multi-level grid control strategies,” in 2020 International Conference on Smart Grids and Energy Systems (SGES), pp. 175–180, IEEE, 2020.
  16. PhD thesis, Dissertation, Hannover, Leibniz Universität Hannover, 2023, 2023.
  17. N. Majumdar, M. Sarstedt, L. Kluß, and L. Hofmann, “Linear optimization based distribution grid flexibility aggregation augmented with oltc operational flexibilities,” IEEE Access, vol. 10, pp. 77510–77521, 2022.
  18. T. Leveringhaus and L. Hofmann, “Comparison of methods for state prediction: power flow decomposition (pfd), ac power transfer distribution factors (ac-ptdfs), and power transfer distribution factors (ptdfs),” in 2014 IEEE PES Asia-Pacific Power and Energy Engineering Conference (APPEEC), pp. 1–6, IEEE, 2014.
  19. M. Sarstedt, S. Garske, C. Blaufuß, and L. Hofmann, “Modelling of integrated transmission and distribution grids based on synthetic distribution grid models,” in 2019 IEEE Milan PowerTech, pp. 1–6, IEEE, 2019.
  20. M. Sarstedt, N. Majumdar, C. Blaufuß, and L. Hofmann, “Dataset: Multi-voltage-level electric power system data sets- examplemultilevel.mat,” 2020. https://doi.org/10.25835/0013459.
  21. N. Majumdar, P. Kengkat, R. Yermekbayev, and L. Hofmann, “Reliability parameterised distribution grid flexibility aggregation considering renewable uncertainties,” in 2023 58th International Universities Power Engineering Conference (UPEC), pp. 1–6, IEEE, 2023.

Summary

We haven't generated a summary for this paper yet.