Papers
Topics
Authors
Recent
2000 character limit reached

Robust N-1 secure HV Grid Flexibility Estimation for TSO-DSO coordinated Congestion Management with Deep Reinforcement Learning

Published 10 Nov 2022 in eess.SY, cs.AI, and cs.SY | (2211.05855v2)

Abstract: Nowadays, the PQ flexibility from the distributed energy resources (DERs) in the high voltage (HV) grids plays a more critical and significant role in grid congestion management in TSO grids. This work proposed a multi-stage deep reinforcement learning approach to estimate the PQ flexibility (PQ area) at the TSO-DSO interfaces and identifies the DER PQ setpoints for each operating point in a way, that DERs in the meshed HV grid can be coordinated to offer flexibility for the transmission grid. In the estimation process, we consider the steady-state grid limits and the robustness in the resulting voltage profile against uncertainties and the N-1 security criterion regarding thermal line loading, essential for real-life grid operational planning applications. Using deep reinforcement learning (DRL) for PQ flexibility estimation is the first of its kind. Furthermore, our approach of considering N-1 security criterion for meshed grids and robustness against uncertainty directly in the optimization tasks offers a new perspective besides the common relaxation schema in finding a solution with mathematical optimal power flow (OPF). Finally, significant improvements in the computational efficiency in estimation PQ area are the highlights of the proposed method.

Citations (3)

Summary

Paper to Video (Beta)

Whiteboard

No one has generated a whiteboard explanation for this paper yet.

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Continue Learning

We haven't generated follow-up questions for this paper yet.

Collections

Sign up for free to add this paper to one or more collections.