Evidence of a Past Merger of the Galactic Center Black Hole (2403.06416v4)
Abstract: The origin of supermassive black holes (SMBHs) residing in the centers of most galaxies remains a mystery. The Event Horizon Telescope (EHT) provided direct imaging of the SMBH Sgr A* at the Milky Way's center, indicating it likely spins rapidly with its spin axis significantly misaligned relative to the Galactic plane's angular momentum. Through investigating various SMBH growth models, here we show that the inferred spin properties of Sgr A* provide evidence of a past SMBH merger. Inspired by the merger between the Milky Way and Gaia-Enceladus, which has a 4:1 mass ratio as inferred from Gaia data, we have discovered that a 4:1 major merger of SMBH with a binary angular momentum inclination angle of 145-180 degrees with respect to the line of sight (LOS), can successfully replicate the measured spin properties of Sgr A*. This merger event in our galaxy provides potential observational support for the theory of hierarchical BH mergers in the formation and growth of SMBHs. The inferred merger rate, consistent with theoretical predictions, suggests a promising detection rate of SMBH mergers for space-borne gravitational wave detectors expected to operate in 2030s.
- Richstone, D. et al. Supermassive black holes and the evolution of galaxies. Nature 385, A14 (1998). astro-ph/9810378.
- Fan, X. et al. A Survey of z>>>5.8 Quasars in the Sloan Digital Sky Survey. I. Discovery of Three New Quasars and the Spatial Density of Luminous Quasars at z~6. AJ 122, 2833–2849 (2001). astro-ph/0108063.
- Lawrence, A. et al. The UKIRT Infrared Deep Sky Survey (UKIDSS). MNRAS 379, 1599–1617 (2007). astro-ph/0604426.
- Soltan, A. Masses of quasars. MNRAS 200, 115–122 (1982).
- Observational constraints on growth of massive black holes. MNRAS 335, 965–976 (2002). astro-ph/0203082.
- The Assembly and Merging History of Supermassive Black Holes in Hierarchical Models of Galaxy Formation. ApJ 582, 559–573 (2003). astro-ph/0207276.
- Springel, V. et al. Simulations of the formation, evolution and clustering of galaxies and quasars. Nature 435, 629–636 (2005). astro-ph/0504097.
- Event Horizon Telescope Collaboration et al. First Sagittarius A* Event Horizon Telescope Results. I. The Shadow of the Supermassive Black Hole in the Center of the Milky Way. ApJ 930, L12 (2022).
- Helmi, A. et al. The merger that led to the formation of the Milky Way’s inner stellar halo and thick disk. Nature 563, 85–88 (2018). 1806.06038.
- Amaro-Seoane, P. et al. Laser Interferometer Space Antenna. arXiv e-prints arXiv:1702.00786 (2017). 1702.00786.
- Taiji Program: Gravitational-Wave Sources. arXiv e-prints arXiv:1807.09495 (2018). 1807.09495.
- Luo, J. et al. TianQin: a space-borne gravitational wave detector. Classical and Quantum Gravity 33, 035010 (2016). 1512.02076.
- Event Horizon Telescope Collaboration et al. First Sagittarius A* Event Horizon Telescope Results. V. Testing Astrophysical Models of the Galactic Center Black Hole. ApJ 930, L16 (2022).
- An Upper Limit on the Spin of SgrA* Based on Stellar Orbits in Its Vicinity. ApJ 901, L32 (2020). 2008.11734.
- Black Hole Spin and Galactic Morphology. ApJ 667, 704–713 (2007). 0706.3900.
- Growing supermassive black holes by chaotic accretion. MNRAS 373, L90–L92 (2006). astro-ph/0609598.
- Black hole evolution - III. Statistical properties of mass growth and spin evolution using large-scale hydrodynamical cosmological simulations. MNRAS 440, 1590–1606 (2014). 1304.4583.
- Beckmann, R. S. et al. Supermassive black holes in merger-free galaxies have higher spins which are preferentially aligned with their host galaxy. arXiv e-prints arXiv:2211.13614 (2022). 2211.13614.
- Supermassive black hole spin evolution in cosmological simulations with OpenGadget3. arXiv e-prints arXiv:2312.07657 (2023). 2312.07657.
- Peirani, S. et al. Cosmic evolution of black hole-spin and galaxy orientations: clues from the NewHorizon and Galactica simulations. arXiv e-prints arXiv:2401.03712 (2024). 2401.03712.
- The Merger History of Supermassive Black Holes in Galaxies. ApJ 558, 535–542 (2001). astro-ph/0101196.
- The Assembly of Supermassive Black Holes at High Redshifts. ApJ 696, 1798–1822 (2009). 0807.4702.
- Intermediate-Mass Black Holes. ARA&A 58, 257–312 (2020). 1911.09678.
- Electromagnetic extraction of energy from Kerr black holes. MNRAS 179, 433–456 (1977).
- Hyperaccreting Black Hole as Gamma-Ray Burst Central Engine. II. Temporal Evolution of the Central Engine Parameters during the Prompt and Afterglow Phases. ApJ 849, 47 (2017). 1708.05043.
- Magorrian, J. et al. The Demography of Massive Dark Objects in Galaxy Centers. AJ 115, 2285–2305 (1998). astro-ph/9708072.
- Coevolution (Or Not) of Supermassive Black Holes and Host Galaxies. ARA&A 51, 511–653 (2013). 1304.7762.
- Lang, M. et al. Can a satellite galaxy merger explain the active past of the Galactic Centre? MNRAS 430, 2574–2584 (2013). 1107.2923.
- The Orientation of Jets Relative to Dust Disks in Radio Galaxies. ApJ 575, 150–155 (2002). astro-ph/0204247.
- Resolving cosmic structure formation with the Millennium-II Simulation. MNRAS 398, 1150–1164 (2009). 0903.3041.
- Formation of Galactic Nuclei. ApJ 563, 34–62 (2001). astro-ph/0103350.
- Scattering experiments meet N-body - I. A practical recipe for the evolution of massive black hole binaries in stellar environments. MNRAS 454, L66–L70 (2015). 1505.02062.
- Interactions between multiple supermassive black holes in galactic nuclei: a solution to the final parsec problem. MNRAS 473, 3410–3433 (2018). 1709.06501.
- The Gravitational Wave Signal from Massive Black Hole Binaries and Its Contribution to the LISA Data Stream. ApJ 623, 23–30 (2005). astro-ph/0409255.
- Volonteri, M. et al. Black hole mergers from dwarf to massive galaxies with the NewHorizon and Horizon-AGN simulations. MNRAS 498, 2219–2238 (2020). 2005.04902.
- Massive Black Hole Binaries from the TNG50-3 Simulation. I. Coalescence and LISA Detection Rates. ApJ 933, 104 (2022). 2201.11088.
- The Evolution of Galaxy Number Density at z <<< 8 and Its Implications. ApJ 830, 83 (2016). 1607.03909.
- The Proper Motion of Sagittarius A*. II. The Mass of Sagittarius A*. ApJ 616, 872–884 (2004). astro-ph/0408107.
- Ghez, A. M. et al. Measuring Distance and Properties of the Milky Way’s Central Supermassive Black Hole with Stellar Orbits. ApJ 689, 1044–1062 (2008). 0808.2870.
- The Proper Motion of Sagittarius A*. III. The Case for a Supermassive Black Hole. ApJ 892, 39 (2020). 2001.04386.
- Ejection of Supermassive Black Holes from Galaxy Cores. ApJ 678, 780–797 (2008). 0708.0771.
- Hirano, S. et al. One Hundred First Stars: Protostellar Evolution and the Final Masses. ApJ 781, 60 (2014). 1308.4456.
- The evolution and fate of Very Massive Objects. ApJ 280, 825–847 (1984).
- Massive Black Holes as Population III Remnants. ApJ 551, L27–L30 (2001). astro-ph/0101223.
- Massive black holes in globular clusters. Nature 256, 23–24 (1975).
- The fate of dense stellar systems. MNRAS 185, 847–860 (1978).
- The Dynamical Evolution of Dense Star Clusters in Galactic Nuclei. ApJ 356, 483 (1990).
- Lee, M. H. N-Body Evolution of Dense Clusters of Compact Stars. ApJ 418, 147 (1993).
- Ebisuzaki, T. et al. Missing Link Found? The “Runaway” Path to Supermassive Black Holes. ApJ 562, L19–L22 (2001). astro-ph/0106252.
- Production of intermediate-mass black holes in globular clusters. MNRAS 330, 232–240 (2002). astro-ph/0106188.
- The Runaway Growth of Intermediate-Mass Black Holes in Dense Star Clusters. ApJ 576, 899–907 (2002). astro-ph/0201055.
- The Formation of Intermediate-mass Black Holes in Galactic Nuclei. ApJ 929, L22 (2022). 2201.00022.
- Atallah, D. et al. Growing black holes through successive mergers in galactic nuclei - I. Methods and first results. MNRAS 523, 4227–4250 (2023). 2211.09670.
- Can Supermassive Black Holes Form in Metal-enriched High-Redshift Protogalaxies? ApJ 686, 801–814 (2008). 0804.3141.
- Formation of the First Nuclear Clusters and Massive Black Holes at High Redshift. ApJ 694, 302–313 (2009). 0810.1057.
- Collapse of Primordial Gas Clouds and the Formation of Quasar Black Holes. ApJ 432, 52 (1994). astro-ph/9401026.
- Formation of supermassive black holes by direct collapse in pre-galactic haloes. MNRAS 370, 289–298 (2006). astro-ph/0602363.
- Supermassive black hole formation during the assembly of pre-galactic discs. MNRAS 371, 1813–1823 (2006). astro-ph/0606159.
- Black holes in binary systems. Observational appearance. A&A 24, 337–355 (1973).
- The evolution of viscous discs and the origin of the nebular variables. MNRAS 168, 603–637 (1974).
- A two-temperature accretion disk model for Cygnus X-1: structure and spectrum. ApJ 204, 187–199 (1976).
- Ichimaru, S. Bimodal behavior of accretion disks: theory and application to Cygnus X-1 transitions. ApJ 214, 840–855 (1977).
- Advection-dominated Accretion: A Self-similar Solution. ApJ 428, L13 (1994). astro-ph/9403052.
- Advection-dominated Accretion: Self-Similarity and Bipolar Outflows. ApJ 444, 231 (1995). astro-ph/9411058.
- On the fate of gas accreting at a low rate on to a black hole. MNRAS 303, L1–L5 (1999). astro-ph/9809083.
- McKinney, J. C. Total and Jet Blandford-Znajek Power in the Presence of an Accretion Disk. ApJ 630, L5–L8 (2005). astro-ph/0506367.
- The power of relativistic jets is larger than the luminosity of their accretion disks. Nature 515, 376–378 (2014). 1411.5368.
- Jets in magnetically arrested hot accretion flows: geometry, power, and black hole spin-down. MNRAS 511, 3795–3813 (2022). 2108.12380.
- Three-dimensional Magnetohydrodynamic Simulations of Radiatively Inefficient Accretion Flows. ApJ 592, 1042–1059 (2003). astro-ph/0301402.
- Magnetically Arrested Disk: an Energetically Efficient Accretion Flow. PASJ 55, L69–L72 (2003). astro-ph/0305029.
- GRMHD simulations of magnetized advection-dominated accretion on a non-spinning black hole: role of outflows. MNRAS 426, 3241–3259 (2012). 1206.1213.
- Disk-Accretion onto a Black Hole. Time-Averaged Structure of Accretion Disk. ApJ 191, 499–506 (1974).
- The evolution of black hole mass and spin in active galactic nuclei. MNRAS 385, 1621–1627 (2008). 0801.1564.
- Chaotic gas accretion by black holes embedded in AGN discs as cause of low-spin signatures in gravitational wave events. MNRAS 522, 319–329 (2023). 2303.17097.
- Spin evolution and feedback of supermassive black holes in cosmological simulations. MNRAS 490, 4133–4153 (2019). 1902.04651.
- Varma, V. et al. Surrogate models for precessing binary black hole simulations with unequal masses. Physical Review Research 1, 033015 (2019). 1905.09300.
- Boschini, M. et al. Extending black-hole remnant surrogate models to extreme mass ratios. Phys. Rev. D 108, 084015 (2023). 2307.03435.
- Blackman, J. et al. Numerical relativity waveform surrogate model for generically precessing binary black hole mergers. Phys. Rev. D 96, 024058 (2017). 1705.07089.
- High-Accuracy Mass, Spin, and Recoil Predictions of Generic Black-Hole Merger Remnants. Phys. Rev. Lett. 122, 011101 (2019). 1809.09125.
- Guo, Q. et al. From dwarf spheroidals to cD galaxies: simulating the galaxy population in a ΛΛ\Lambdaroman_ΛCDM cosmology. MNRAS 413, 101–131 (2011). 1006.0106.
- Tidal disruption events from massive black hole binaries: predictions for ongoing and future surveys. arXiv e-prints arXiv:1811.01960 (2018). 1811.01960.
- Massive black hole binaries in active galactic nuclei. Nature 287, 307–309 (1980).
- Disk-satellite interactions. ApJ 241, 425–441 (1980).
- Efficient Merger of Binary Supermassive Black Holes in Nonaxisymmetric Galaxies. ApJ 642, L21–L24 (2006). astro-ph/0601698.
- The Final-parsec Problem in the Collisionless Limit. ApJ 810, 49 (2015). 1505.05480.
- Quinlan, G. D. The dynamical evolution of massive black hole binaries I. Hardening in a fixed stellar background. New A 1, 35–56 (1996). astro-ph/9601092.
- Interaction of Massive Black Hole Binaries with Their Stellar Environment. I. Ejection of Hypervelocity Stars. ApJ 651, 392–400 (2006). astro-ph/0604299.
- Gravitational Radiation from Point Masses in a Keplerian Orbit. Physical Review 131, 435–440 (1963).
- Peters, P. C. Gravitational Radiation and the Motion of Two Point Masses. Physical Review 136, 1224–1232 (1964).
- Dehnen, W. A Family of Potential-Density Pairs for Spherical Galaxies and Bulges. MNRAS 265, 250 (1993).
- From star clusters to dwarf galaxies: the properties of dynamically hot stellar systems. MNRAS 386, 864–886 (2008). 0802.0703.
- Bekenstein, J. D. Gravitational-Radiation Recoil and Runaway Black Holes. ApJ 183, 657–664 (1973).
- Effects of gravitational-wave recoil on the dynamics and growth of supermassive black holes. MNRAS 390, 1311–1325 (2008). 0805.1420.
- Brownian Motion of Black Holes in Dense Nuclei. AJ 133, 553–563 (2007). astro-ph/0408029.
- The Need for a Second Black Hole at the Galactic Center. ApJ 593, L77–L80 (2003). astro-ph/0306074.
- The nature of the Galactic Center source IRS 13 revealed by high spatial resolution in the infrared. A&A 423, 155–167 (2004). astro-ph/0404450.
- The Disruption of Stellar Clusters Containing Massive Black Holes near the Galactic Center. ApJ 628, 236–245 (2005). astro-ph/0412452.
- Perturbations of Intermediate-mass Black Holes on Stellar Orbits in the Galactic Center. ApJ 705, 361–371 (2009). 0905.4514.
- Is There an Intermediate Massive Black Hole in the Galactic Center: Imprints on the Stellar Tidal-disruption Rate. ApJ 762, 95 (2013). 1211.4609.
- The Hills Mechanism and the Galactic Center S-stars. ApJ 896, 137 (2020). 2002.10547.
- Naoz, S. et al. A Hidden Friend for the Galactic Center Black Hole, Sgr A*. ApJ 888, L8 (2020). 1912.04910.
- The Influence of the Secular Perturbation of an Intermediate-mass Companion. I. Eccentricity Excitation of Disk Stars at the Galactic Center. ApJ 905, 169 (2020). 2011.04653.
- Will, C. M. et al. Constraining a Companion of the Galactic Center Black Hole Sgr A*. ApJ 959, 58 (2023). 2307.16646.
- Gravity Collaboration et al. Where intermediate-mass black holes could hide in the Galactic Centre. A full parameter study with the S2 orbit. A&A 672, A63 (2023). 2303.04067.
Paper Prompts
Sign up for free to create and run prompts on this paper using GPT-5.
Top Community Prompts
Collections
Sign up for free to add this paper to one or more collections.