Low Overhead Qutrit Magic State Distillation (2403.06228v3)
Abstract: We show that using qutrits rather than qubits leads to a substantial reduction in the overhead cost associated with an approach to fault-tolerant quantum computing known as magic state distillation. We construct a family of $[[9m-k, k, 2]]_3$ triorthogonal qutrit error-correcting codes for any positive integers $m$ and $k$ with $k \leq 3m-2$ that are suitable for magic state distillation. In magic state distillation, the number of ancillae required to produce a magic state with target error rate $\epsilon$ is $O(\log\gamma \epsilon{-1})$, where the yield parameter $\gamma$ characterizes the overhead cost. For $k=3m-2$, our codes have $\gamma = \log_2 (2+\frac{6}{3 m-2})$, which tends to $1$ as $m \to \infty$. Moreover, the $[[20,7,2]]_3$ qutrit code that arises from our construction when $m=3$ already has a yield parameter of $1.51$ which outperforms all known qubit triorthogonal codes of size less than a few hundred qubits.
- “Universal quantum computation with ideal Clifford gates and noisy ancillas”. Phys. Rev. A 71, 022316 (2005).
- E. Knill. “Fault-tolerant postselected quantum computation: Schemes” (2004). arXiv:quant-ph/0402171.
- “Quantum computation with realistic magic-state factories”. Phys. Rev. A 95, 032338 (2017).
- “Magic-state distillation with low overhead”. Phys. Rev. A 86, 052329 (2012).
- “Distillation with sublogarithmic overhead”. Phys. Rev. Lett. 120, 050504 (2018).
- Cody Jones. “Multilevel distillation of magic states for quantum computing”. Phys. Rev. A 87, 042305 (2013).
- “Magic state distillation with low space overhead and optimal asymptotic input count”. Quantum 1, 31 (2017).
- “Codes and Protocols for Distilling T𝑇Titalic_T, controlled-S𝑆Sitalic_S, and Toffoli Gates”. Quantum 2, 71 (2018).
- “Classification of small triorthogonal codes”. Phys. Rev. A 106, 012437 (2022).
- “Qutrit magic state distillation”. New J. Phys. 14, 063006 (2012).
- “Magic-state distillation in all prime dimensions using quantum reed-muller codes”. Phys. Rev. X 2, 041021 (2012).
- “Contextuality supplies the ‘magic’ for quantum computation”. Nature 510, 351–355 (2014).
- Earl T. Campbell. “Enhanced fault-tolerant quantum computing in d𝑑ditalic_d-level systems”. Phys. Rev. Lett. 113, 230501 (2014).
- “Qutrit magic state distillation tight in some directions”. Phys. Rev. Lett. 115, 030501 (2015).
- “Modelling microtubules in the brain as n-qudit quantum Hopfield network and beyond”. Int. J. Gen. Syst. 45, 41–54 (2016).
- “From n-qubit multi-particle quantum teleportation modelling to n-qudit contextuality based quantum teleportation and beyond”. Int. J. Gen. Syst. 46, 414–435 (2017).
- “Towards low overhead magic state distillation”. Phys. Rev. Lett. 123, 070507 (2019).
- Shiroman Prakash. “Magic state distillation with the ternary Golay code”. Proceedings of the Royal Society A: Mathematical, Physical and Engineering Sciences 476, 20200187 (2020). arXiv:2003.02717.
- “Qudit versions of the qubit π/8𝜋8\pi/8italic_π / 8 gate”. Phys. Rev. A 86, 022316 (2012).
- Wim van Dam and Mark Howard. “Noise thresholds for higher-dimensional systems using the discrete Wigner function”. Phys. Rev. A 83, 032310 (2011).
- “Normal form for single-qutrit Clifford+T𝑇{T}italic_T operators and synthesis of single-qutrit gates”. Phys. Rev. A 98, 032304 (2018).
- “Canonical forms for single-qutrit Clifford+T𝑇{T}italic_T operators”. Annals of Physics 406, 54–70 (2019).
- “Diagonal gates in the Clifford hierarchy”. Phys. Rev. A 95, 012329 (2017).
- “Synthesis and arithmetic of single qutrit circuits” (2024). arXiv:2311.08696.
- “Qutrit and ququint magic states”. Phys. Rev. A 102, 042409 (2020).
- “Negative quasi-probability as a resource for quantum computation”. New J. Phys. 14, 113011 (2012).
- “The resource theory of stabilizer quantum computation”. New J. Phys. 16, 013009 (2014).
- “Contextual bound states for qudit magic state distillation”. Phys. Rev. A 101, 010303 (2020).
- “Manipulating biphotonic qutrits”. Phys. Rev. Lett. 100, 060504 (2008).
- “Control and tomography of a three level superconducting artificial atom”. Phys. Rev. Lett. 105, 223601 (2010).
- “Characterization of multilevel dynamics and decoherence in a high-anharmonicity capacitively shunted flux circuit” (2021).
- “Characterization of control in a superconducting qutrit using randomized benchmarking” (2021).
- “A universal qudit quantum processor with trapped ions”. Nature Phys. 18, 1053–1057 (2022). arXiv:2109.06903.
- Noah Goss et al. “High-fidelity qutrit entangling gates for superconducting circuits”. Nature Commun. 13, 7481 (2022). arXiv:2206.07216.
- “Complete unitary qutrit control in ultracold atoms”. Phys. Rev. Appl. 19, 034089 (2023).
- “Extending the computational reach of a superconducting qutrit processor” (2023). arXiv:2305.16507.
- “Efficient two-qutrit gates in superconducting circuits using parametric coupling” (2023). arXiv:2309.05766.
- “The Magma algebra system I: The user language”. Journal of Symbolic Computation 24, 235–265 (1997).
Paper Prompts
Sign up for free to create and run prompts on this paper using GPT-5.
Top Community Prompts
Collections
Sign up for free to add this paper to one or more collections.