Papers
Topics
Authors
Recent
2000 character limit reached

Toward Understanding Key Estimation in Learning Robust Humanoid Locomotion (2403.05868v1)

Published 9 Mar 2024 in cs.RO

Abstract: Accurate state estimation plays a critical role in ensuring the robust control of humanoid robots, particularly in the context of learning-based control policies for legged robots. However, there is a notable gap in analytical research concerning estimations. Therefore, we endeavor to further understand how various types of estimations influence the decision-making processes of policies. In this paper, we provide quantitative insight into the effectiveness of learned state estimations, employing saliency analysis to identify key estimation variables and optimize their combination for humanoid locomotion tasks. Evaluations assessing tracking precision and robustness are conducted on comparative groups of policies with varying estimation combinations in both simulated and real-world environments. Results validated that the proposed policy is capable of crossing the sim-to-real gap and demonstrating superior performance relative to alternative policy configurations.

Definition Search Book Streamline Icon: https://streamlinehq.com
References (37)
  1. S. Kuindersma, R. Deits, M. Fallon, A. Valenzuela, H. Dai, F. Permenter, T. Koolen, P. Marion, and R. Tedrake, “Optimization-based locomotion planning, estimation, and control design for the atlas humanoid robot,” Autonomous robots, vol. 40, pp. 429–455, 2016.
  2. E. R. Westervelt, J. W. Grizzle, and D. E. Koditschek, “Hybrid zero dynamics of planar biped walkers,” IEEE transactions on automatic control, vol. 48, no. 1, pp. 42–56, 2003.
  3. S. Collins, A. Ruina, R. Tedrake, and M. Wisse, “Efficient bipedal robots based on passive-dynamic walkers,” Science, vol. 307, no. 5712, pp. 1082–1085, 2005.
  4. Y. Gong, R. Hartley, X. Da, A. Hereid, O. Harib, J.-K. Huang, and J. Grizzle, “Feedback control of a cassie bipedal robot: Walking, standing, and riding a segway,” in 2019 American Control Conference (ACC), 2019, pp. 4559–4566.
  5. J.-K. Huang and J. W. Grizzle, “Efficient anytime clf reactive planning system for a bipedal robot on undulating terrain,” IEEE Transactions on Robotics, vol. 39, no. 3, pp. 2093–2110, 2023.
  6. G. Gibson, O. Dosunmu-Ogunbi, Y. Gong, and J. Grizzle, “Terrain-adaptive, alip-based bipedal locomotion controller via model predictive control and virtual constraints,” in 2022 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS), 2022, pp. 6724–6731.
  7. A. Adu-Bredu, G. Gibson, and J. Grizzle, “Exploring kinodynamic fabrics for reactive whole-body control of underactuated humanoid robots,” 2023. [Online]. Available: http://arxiv.org/abs/2303.04279
  8. J. Reher, W.-L. Ma, and A. D. Ames, “Dynamic walking with compliance on a cassie bipedal robot,” in 2019 18th European Control Conference (ECC), 2019, pp. 2589–2595.
  9. B. Dynamics, “Picking up momentum,” 2023. [Online]. Available: https://www.bostondynamics.com/resources/blog/picking-momentum
  10. J. Hwangbo, J. Lee, A. Dosovitskiy, D. Bellicoso, V. Tsounis, V. Koltun, and M. Hutter, “Learning agile and dynamic motor skills for legged robots,” Science Robotics, vol. 4, no. 26, p. eaau5872, Jan 2019.
  11. J. Lee, J. Hwangbo, L. Wellhausen, V. Koltun, and M. Hutter, “Learning quadrupedal locomotion over challenging terrain,” Science robotics, vol. 5, no. 47, p. eabc5986, 2020.
  12. T. Miki, J. Lee, J. Hwangbo, L. Wellhausen, V. Koltun, and M. Hutter, “Learning robust perceptive locomotion for quadrupedal robots in the wild,” Science Robotics, vol. 7, no. 62, p. eabk2822, 2022.
  13. G. B. Margolis and P. Agrawal, “Walk these ways: tuning robot control for generalization with multiplicity of behavior,” Conference on Robot Learning (CoRL), 2022.
  14. G. Margolis, G. Yang, K. Paigwar, T. Chen, and P. Agrawal, “Rapid locomotion via reinforcement learning,” in Robotics: Science and Systems (RSS), 2022.
  15. A. Agarwal, A. Kumar, J. Malik, and D. Pathak, “Legged locomotion in challenging terrains using egocentric vision,” in 6th Annual Conference on Robot Learning (CoRL), 2022. [Online]. Available: https://openreview.net/forum?id=Re3NjSwf0WF
  16. A. Loquercio, A. Kumar, and J. Malik, “Learning visual locomotion with cross-modal supervision,” in 2023 IEEE International Conference on Robotics and Automation (ICRA).   IEEE, 2023, pp. 7295–7302.
  17. A. Kumar, Z. Fu, D. Pathak, and J. Malik, “RMA: rapid motor adaptation for legged robots,” in Robotics: Science and Systems (RSS), 2021.
  18. A. Kumar, Z. Li, J. Zeng, D. Pathak, K. Sreenath, and J. Malik, “Adapting rapid motor adaptation for bipedal robots,” in 2022 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS), oct 2022, pp. 1161–1168, iSSN: 2153-0866.
  19. J. Siekmann, Y. Godse, A. Fern, and J. Hurst, “Sim-to-real learning of all common bipedal gaits via periodic reward composition,” in 2021 IEEE International Conference on Robotics and Automation (ICRA), 2021, pp. 7309–7315.
  20. J. Siekmann, K. Green, J. Warila, A. Fern, and J. Hurst, “Blind bipedal stair traversal via sim-to-real reinforcement learning,” in Robotics: Science and Systems (RSS), ser. Robotics - Science and Systems, 2021.
  21. H. Duan, A. Malik, M. S. Gadde, J. Dao, A. Fern, and J. Hurst, “Learning dynamic bipedal walking across stepping stones,” in 2022 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS), ser. IEEE International Conference on Intelligent Robots and Systems, 2022, pp. 6746–6752.
  22. F. Yu, R. Batke, J. Dao, J. Hurst, K. Green, and A. Fern, “Dynamic bipedal turning through sim-to-real reinforcement learning,” in 2022 IEEE-RAS 21st International Conference on Humanoid Robots (Humanoids), 2022, pp. 903–910.
  23. I. M. A. Nahrendra, B. Yu, and H. Myung, “Dreamwaq: Learning robust quadrupedal locomotion with implicit terrain imagination via deep reinforcement learning,” in 2023 IEEE International Conference on Robotics and Automation (ICRA).   IEEE, 2023, pp. 5078–5084.
  24. X. Cheng, K. Shi, A. Agarwal, and D. Pathak, “Extreme parkour with legged robots,” arXiv preprint arXiv:2309.14341, 2023.
  25. C. Yang, K. Yuan, Q. Zhu, W. Yu, and Z. Li, “Multi-expert learning of adaptive legged locomotion,” Science Robotics, vol. 5, no. 49, p. eabb2174, 2020.
  26. I. Clavera, J. Rothfuss, J. Schulman, Y. Fujita, T. Asfour, and P. Abbeel, “Model-based reinforcement learning via meta-policy optimization,” in Conference on Robot Learning.   PMLR, 2018, pp. 617–629.
  27. R. Batke, F. Yu, J. Dao, J. Hurst, R. L. Hatton, A. Fern, and K. Green, “Optimizing bipedal maneuvers of single rigid-body models for reinforcement learning,” in 2022 IEEE-RAS 21st International Conference on Humanoid Robots (Humanoids).   IEEE, 2022, pp. 714–721.
  28. Z. Wang, W. Wei, A. Xie, Y. Zhang, J. Wu, and Q. Zhu, “Hybrid bipedal locomotion based on reinforcement learning and heuristics,” MICROMACHINES, vol. 13, no. 10, OCT 2022.
  29. I. Radosavovic, T. Xiao, B. Zhang, T. Darrell, J. Malik, and K. Sreenath, “Learning humanoid locomotion with transformers,” arXiv:2303.03381, 2023.
  30. J. Bastien and L. Birglen, “Power efficient design a compliant robotic leg based on klann’s linkage,” IEEE/ASME Transactions on Mechatronics, vol. 28, no. 2, pp. 814–824, 2023.
  31. J. Schulman, F. Wolski, P. Dhariwal, A. Radford, and O. Klimov, “Proximal policy optimization algorithms,” arXiv preprint arXiv:1707.06347, Jul 2017.
  32. J. Hwangbo, J. Lee, and M. Hutter, “Per-contact iteration method for solving contact dynamics,” IEEE Robotics and Automation Letters, vol. 3, no. 2, pp. 895–902, 2018.
  33. H. Herr and M. Popovic, “Angular momentum in human walking,” Journal of Experimental Biology, vol. 211, no. 4, pp. 467–481, feb 2008. [Online]. Available: https://doi.org/10.1242/jeb.008573
  34. A. Paszke, S. Gross, F. Massa, A. Lerer, J. Bradbury, G. Chanan, T. Killeen, Z. Lin, N. Gimelshein, L. Antiga, A. Desmaison, A. Köpf, E. Yang, Z. DeVito, M. Raison, A. Tejani, S. Chilamkurthy, B. Steiner, L. Fang, J. Bai, and S. Chintala, “Pytorch: An imperative style, high-performance deep learning library,” in 33rd International Conference on Neural Information Processing Systems (NIPS).   Red Hook, NY, USA: Curran Associates Inc., 2019, pp. 1–12.
  35. V. Makoviychuk, L. Wawrzyniak, Y. Guo, M. Lu, K. Storey, M. Macklin, D. Hoeller, N. Rudin, A. Allshire, A. Handa, and G. State, “Isaac gym: High performance gpu-based physics simulation for robot learning,” 2021.
  36. G. Ji, J. Mun, H. Kim, and J. Hwangbo, “Concurrent training of a control policy and a state estimator for dynamic and robust legged locomotion,” IEEE Robotics and Automation Letters, vol. 7, no. 2, pp. 4630–4637, 2022.
  37. W. Wei, Z. Wang, A. Xie, J. Wu, R. Xiong, and Q. Zhu, “Learning gait-conditioned bipedal locomotion with motor adaptation*,” in 2023 IEEE-RAS 22nd International Conference on Humanoid Robots (Humanoids), 2023, pp. 1–7.
Citations (3)

Summary

We haven't generated a summary for this paper yet.

Slide Deck Streamline Icon: https://streamlinehq.com

Whiteboard

Dice Question Streamline Icon: https://streamlinehq.com

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

X Twitter Logo Streamline Icon: https://streamlinehq.com

Tweets

Sign up for free to view the 1 tweet with 3 likes about this paper.