Papers
Topics
Authors
Recent
Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 88 tok/s
Gemini 2.5 Pro 47 tok/s Pro
GPT-5 Medium 21 tok/s Pro
GPT-5 High 13 tok/s Pro
GPT-4o 81 tok/s Pro
Kimi K2 175 tok/s Pro
GPT OSS 120B 450 tok/s Pro
Claude Sonnet 4 39 tok/s Pro
2000 character limit reached

Emergent resonances in a thin film tailored by optically-induced small permittivity asymmetries (2403.05730v1)

Published 8 Mar 2024 in physics.optics

Abstract: Resonances are usually associated with finite systems - the vibrations of clamped strings in a guitar or the optical modes in a cavity defined by mirrors. In optics, resonances may be induced in infinite continuous media via periodic modulations of their optical properties. Here we demonstrate that periodic modulations of the permittivity of a featureless thin film can also act as a symmetry breaking mechanism, allowing the excitation of photonic $\textit{quasi}$-bound states in the continuum ($\textit{q}$BICs). By interfering two ultrashort laser pulses in the unbounded film, transient resonances can be tailored through different parameters of the pump beams. We show that the system offers resonances tunable in wavelength and quality-factor, and spectrally selective enhancement of third harmonic generation. Due to a fast decay of the permittivity asymmetry, we observe ultrafast dynamics, enabling time-selective near-field enhancement with picosecond precision. Optically-induced permittivity asymmetries may be exploited in on-demand weak to ultrastrong light-matter interaction regimes and light manipulation at dynamically chosen wavelengths in lithography-free metasurfaces.

Definition Search Book Streamline Icon: https://streamlinehq.com
References (58)
  1. E. U. Condon and G. H. Shortley, The theory of atomic spectra. Cambridge University Press, 1951.
  2. M. Fox, Optical properties of solids. Oxford University Press, 2002.
  3. T. Kazimierczuk, D. Fröhlich, S. Scheel, H. Stolz, and M. Bayer, “Giant Rydberg excitons in the copper oxide Cu22{}_{2}start_FLOATSUBSCRIPT 2 end_FLOATSUBSCRIPTO,” Nature, vol. 514, pp. 343–347, 2014.
  4. L. Novotny and B. Hecht, Principles of nano-optics. Cambridge University Press, 2012.
  5. A. V. Kildishev, A. Boltasseva, and V. M. Shalaev, “Planar photonics with metasurfaces,” Science, vol. 339, p. 1232009, 2013.
  6. M. Kadic, G. W. Milton, M. van Hecke, and M. Wegener, “3D metamaterials,” Nature Reviews Physics, vol. 1, pp. 198–210, 2019.
  7. S. S. Wang, R. Magnusson, J. S. Bagby, and M. G. Moharam, “Guided-mode resonances in planar dielectric-layer diffraction gratings,” JOSA A, vol. 7, pp. 1470–1474, 1990.
  8. R. Magnusson and S. S. Wang, “New principle for optical filters,” Applied physics letters, vol. 61, pp. 1022–1024, 1992.
  9. S. S. Wang and R. Magnusson, “Theory and applications of guided-mode resonance filters,” Applied Optics, vol. 32, pp. 2606–2613, 1993.
  10. E. Galiffi, R. Tirole, S. Yin, H. Li, S. Vezzoli, P. A. Huidobro, M. G. Silveirinha, R. Sapienza, A. Alù, and J. B. Pendry, “Photonics of time-varying media,” Advanced Photonics, vol. 4, p. 14002, 2022.
  11. Springer, 2013.
  12. X. Liu, J. Li, Q. Zhang, and Y. Wang, “Dual-toroidal dipole excitation on permittivity-asymmetric dielectric metasurfaces,” Optics Letters, vol. 45, pp. 2826–2829, 2020.
  13. S. Yu, Y. Wang, Z. Gao, H. Li, S. Song, J. Yu, and T. Zhao, “Dual-band polarization-insensitive toroidal dipole quasi-bound states in the continuum in a permittivity-asymmetric all-dielectric meta-surface,” Optics express, vol. 30, pp. 4084–4095, 2022.
  14. R. Berté, T. Weber, L. de Souza Menezes, L. Kühner, A. Aigner, M. Barkey, F. J. Wendisch, Y. Kivshar, A. Tittl, and S. A. Maier, “Permittivity-asymmetric quasi-bound states in the continuum,” Nano Letters, vol. 23, pp. 2651–2658, 2023.
  15. M. Li, M. Zhao, and J. Wang, “Multiple quasibound states in the continuum of permittivity-asymmetric all-dielectric metasurface: Group-theoretical description,” Optical Materials, vol. 138, p. 113693, 2023.
  16. G. Quaranta, G. Basset, O. J. F. Martin, and B. Gallinet, “Recent advances in resonant waveguide gratings,” Laser & Photonics Reviews, vol. 12, p. 1800017, 2018.
  17. J. von Neumann and E. P. Wigner, “Über merkwürdige diskrete eigenwerte,” The Collected Works of Eugene Paul Wigner: Part A: The Scientific Papers, pp. 291–293, 1993.
  18. T. C. Lim and G. W. Farnell, “Character of pseudo surface waves on anisotropic crystals,” The Journal of the Acoustical Society of America, vol. 45, pp. 845–851, 1969.
  19. R. Parker, “Resonance effects in wake shedding from parallel plates: some experimental observations,” Journal of Sound and Vibration, vol. 4, pp. 62–72, 1966.
  20. F. Ursell, “Trapping modes in the theory of surface waves,” vol. 47, pp. 347–358, Cambridge University Press, 1951.
  21. Y. Plotnik, O. Peleg, F. Dreisow, M. Heinrich, S. Nolte, A. Szameit, and M. Segev, “Experimental observation of optical bound states in the continuum,” Physical Review Letters, vol. 107, p. 183901, 2011.
  22. C. W. Hsu, B. Zhen, A. D. Stone, J. D. Joannopoulos, and M. Soljačić, “Bound states in the continuum,” Nature Reviews Materials, vol. 1, pp. 1–13, 2016.
  23. K. Koshelev, S. Lepeshov, M. Liu, A. Bogdanov, and Y. Kivshar, “Asymmetric metasurfaces with high-Q𝑄{Q}italic_Q resonances governed by bound states in the continuum,” Physical Review Letters, vol. 121, p. 193903, 2018.
  24. M. Rybin and Y. Kivshar, “Supercavity lasing,” Nature, vol. 541, pp. 164–165, 2017.
  25. V. A. Fedotov, M. Rose, S. L. Prosvirnin, N. Papasimakis, and N. I. Zheludev, “Sharp trapped-mode resonances in planar metamaterials with a broken structural symmetry,” Physical Review Letters, vol. 99, p. 147401, 2007.
  26. L. Kühner, L. Sortino, R. Berté, J. Wang, H. Ren, S. A. Maier, Y. Kivshar, and A. Tittl, “Radial bound states in the continuum for polarization-invariant nanophotonics,” Nature Communications, vol. 13, p. 4992, 2022.
  27. S. Noda, M. Yokoyama, M. Imada, A. Chutinan, and M. Mochizuki, “Polarization mode control of two-dimensional photonic crystal laser by unit cell structure design,” Science, vol. 293, pp. 1123–1125, 2001.
  28. K. Hirose, Y. Liang, Y. Kurosaka, A. Watanabe, T. Sugiyama, and S. Noda, “Watt-class high-power, high-beam-quality photonic-crystal lasers,” Nature photonics, vol. 8, pp. 406–411, 2014.
  29. Z. Liu, Y. Xu, Y. Lin, J. Xiang, T. Feng, Q. Cao, J. Li, S. Lan, and J. Liu, “High-Q𝑄{Q}italic_Q quasibound states in the continuum for nonlinear metasurfaces,” Physical Review Letters, vol. 123, p. 253901, 2019.
  30. C. Huang, C. Zhang, S. Xiao, Y. Wang, Y. Fan, Y. Liu, N. Zhang, G. Qu, H. Ji, and J. Han, “Ultrafast control of vortex microlasers,” Science, vol. 367, pp. 1018–1021, 2020.
  31. T. Sjodin, H. Petek, and H.-L. Dai, “Ultrafast carrier dynamics in silicon: A two-color transient reflection grating study on a (111) surface,” Physical Review Letters, vol. 81, p. 5664, 1998.
  32. K. Sokolowski-Tinten and D. von der Linde, “Generation of dense electron-hole plasmas in silicon,” Physical Review B, vol. 61, p. 2643, 2000.
  33. J. Lee, B. Zhen, S.-L. Chua, W. Qiu, J. D. Joannopoulos, M. Soljačić, and O. Shapira, “Observation and differentiation of unique high-Q𝑄{Q}italic_Q optical resonances near zero wave vector in macroscopic photonic crystal slabs,” Physical Review Letters, vol. 109, p. 067401, 2012.
  34. P. Tonkaev, K. Koshelev, M. A. Masharin, S. V. Makarov, S. S. Kruk, and Y. Kivshar, “Observation of enhanced generation of a fifth harmonic from halide perovskite nonlocal metasurfaces,” ACS Photonics, vol. 10, pp. 1367–1375, 2023.
  35. G. Zograf, K. Koshelev, A. Zalogina, V. Korolev, R. Hollinger, D.-Y. Choi, M. Zuerch, C. Spielmann, B. Luther-Davies, and D. Kartashov, “High-harmonic generation from resonant dielectric metasurfaces empowered by bound states in the continuum,” ACS Photonics, vol. 9, pp. 567–574, 2022.
  36. R. W. Terhune, P. D. Maker, and C. M. Savage, “Optical harmonic generation in calcite,” Physical Review Letters, vol. 8, p. 404, 1962.
  37. T. Weber, L. Kühner, L. Sortino, A. B. Mhenni, N. P. Wilson, J. Kühne, J. J. Finley, S. A. Maier, and A. Tittl, “Intrinsic strong light-matter coupling with self-hybridized bound states in the continuum in van der waals metasurfaces,” Nature Materials, pp. 1–7, 2023.
  38. P. Xie and Y. Cheng, “Manipulating coherent interaction of molecular vibrations with quasibound states in the continuum in all-dielectric metasurfaces,” Physical Review B, vol. 108, p. 155412, 2023.
  39. A. Tittl, A. Leitis, M. Liu, F. Yesilkoy, D.-Y. Choi, D. N. Neshev, Y. S. Kivshar, and H. Altug, “Imaging-based molecular barcoding with pixelated dielectric metasurfaces,” Science, vol. 360, pp. 1105–1109, 2018.
  40. P. W. Anderson, “More is different: Broken symmetry and the nature of the hierarchical structure of science.,” Science, vol. 177, pp. 393–396, 1972.
  41. L. Rayleigh, “XXVI. on the remarkable phenomenon of crystalline reflexion described by Prof. Stokes,” The London, Edinburgh, and Dublin Philosophical Magazine and Journal of Science, vol. 26, pp. 256–265, 1888.
  42. E. Yablonovitch, “Inhibited spontaneous emission in solid-state physics and electronics,” Physical Review Letters, vol. 58, p. 2059, 1987.
  43. S. John, “Strong localization of photons in certain disordered dielectric superlattices,” Physical Review Letters, vol. 58, p. 2486, 1987.
  44. S. Abel, F. Eltes, J. E. Ortmann, A. Messner, P. Castera, T. Wagner, D. Urbonas, A. Rosa, A. M. Gutierrez, and D. Tulli, “Large pockels effect in micro-and nanostructured barium titanate integrated on silicon,” Nature Materials, vol. 18, pp. 42–47, 2019.
  45. Springer, 2008.
  46. S. Basu, B. J. Lee, and Z. M. Zhang, “Infrared radiative properties of heavily doped silicon at room temperature,” Journal of Heat Transfer, vol. 132, pp. 0233011–0233018, 2010.
  47. R. A. Soref and B. R. Bennett, “Electrooptical effects in silicon,” IEEE Journal of Quantum Electronics, vol. 23, pp. 123–129, 1987.
  48. S. Han, M. V. Rybin, P. Pitchappa, Y. K. Srivastava, Y. S. Kivshar, and R. Singh, “Guided‐mode resonances in all‐dielectric terahertz metasurfaces,” Advanced Optical Materials, vol. 8, p. 1900959, 2020.
  49. B. C. P. Sturmberg, K. B. Dossou, L. C. Botten, R. C. McPhedran, and C. M. D. Sterke, “Fano resonances of dielectric gratings: symmetries and broadband filtering,” Optics express, vol. 23, pp. A1672–A1686, 2015.
  50. F. J. McClung and R. W. Hellwarth, “Giant optical pulsations from ruby,” Applied Optics, vol. 1, pp. 103–105, 1962.
  51. S. C. Malek, A. C. Overvig, S. Shrestha, and N. Yu, “Active nonlocal metasurfaces,” Nanophotonics, vol. 10, pp. 655–665, 2020.
  52. A. C. Overvig, S. A. Mann, and A. Alù, “Thermal metasurfaces: complete emission control by combining local and nonlocal light-matter interactions,” Physical Review X, vol. 11, p. 021050, 2021.
  53. A. Overvig, N. Yu, and A. Alù, “Chiral quasi-bound states in the continuum,” Physical Review Letters, vol. 126, p. 073001, 2021.
  54. B. Wang, W. Liu, M. Zhao, J. Wang, Y. Zhang, A. Chen, F. Guan, X. Liu, L. Shi, and J. Zi, “Generating optical vortex beams by momentum-space polarization vortices centred at bound states in the continuum,” Nature Photonics, vol. 14, pp. 623–628, 2020.
  55. G. T. Reed, G. Mashanovich, F. Y. Gardes, and D. J. Thomson, “Silicon optical modulators,” Nature Photonics, vol. 4, pp. 518–526, 2010.
  56. A. Kodigala, T. Lepetit, Q. Gu, B. Bahari, Y. Fainman, and B. Kanté, “Lasing action from photonic bound states in continuum,” Nature, vol. 541, pp. 196–199, 2017.
  57. A. F. Kockum, A. Miranowicz, S. D. Liberato, S. Savasta, and F. Nori, “Ultrastrong coupling between light and matter,” Nature Reviews Physics, vol. 1, pp. 19–40, 2019.
  58. A. M. Berghuis, G. W. Castellanos, S. Murai, J. L. Pura, D. R. Abujetas, E. van Heijst, M. Ramezani, J. A. Sánchez-Gil, and J. G. Rivas, “Room temperature exciton–polariton condensation in silicon metasurfaces emerging from bound states in the continuum,” Nano Letters, vol. 23, p. 5603–5609, 2023.
Citations (2)

Summary

We haven't generated a summary for this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

X Twitter Logo Streamline Icon: https://streamlinehq.com

Tweets

This paper has been mentioned in 1 post and received 5 likes.

Don't miss out on important new AI/ML research

See which papers are being discussed right now on X, Reddit, and more:

“Emergent Mind helps me see which AI papers have caught fire online.”

Philip

Philip

Creator, AI Explained on YouTube