Papers
Topics
Authors
Recent
2000 character limit reached

A one-dimensional model for aspiration therapy in blood vessels

Published 8 Mar 2024 in math.NA and cs.NA | (2403.05494v1)

Abstract: Aspiration thrombectomy is a treatment option for ischemic stroke due to occlusions in large vessels. During the therapy a device is inserted into the vessel and suction is applied. A new one-dimensional model is introduced that is capable of simulating this procedure while accounting for the fluid-structure interactions in blood flow. To solve the coupling problem at the tip of the device a problem-suited Riemann solver is constructed based on relaxation of the hyperbolic model. Numerical experiments investigating the role of the catheter size and the suction forces are presented.

Definition Search Book Streamline Icon: https://streamlinehq.com
References (20)
  1. A multiscale computational framework to evaluate flow alterations during mechanical thrombectomy for treatment of ischaemic stroke. Front. Cardiovasc. Med., 10, Mar 2023. URL: http://dx.doi.org/10.3389/fcvm.2023.1117449, doi:10.3389/fcvm.2023.1117449.
  2. One-dimensional models for blood flow in arteries. In Mathematical modelling of the cardiovascular system, volume 47 of -, pages 251–276. Springer, 2003. doi:10.1023/B:ENGI.0000007980.01347.29.
  3. Numerical modeling of 1d arterial networks coupled with a lumped parameters description of the heart. Comput. Methods Biomech. Biomed. Eng., 9(5):273–288, Oct 2006. URL: http://dx.doi.org/10.1080/10255840600857767, doi:10.1080/10255840600857767.
  4. Multiscale modelling of the circulatory system: A preliminary analysis. Comput. Visual Sci., 2(2-3):75–83, Dec. 1999. URL: http://link.springer.com/10.1007/s007910050030, doi:10.1007/s007910050030.
  5. A central scheme for two coupled hyperbolic systems. Communications on Applied Mathematics and Computation, Nov. 2023. URL: http://dx.doi.org/10.1007/s42967-023-00306-5, doi:10.1007/s42967-023-00306-5.
  6. Central schemes for networked scalar conservation laws. Netw. Heterog. Media, 18(1):310–340, 2023. doi:10.3934/nhm.2023012.
  7. T. J. Hughes and J. Lubliner. On the one-dimensional theory of blood flow in the larger vessels. Math. Biosci., 18(1–2):161–170, Oct 1973. URL: http://dx.doi.org/10.1016/0025-5564(73)90027-8, doi:10.1016/0025-5564(73)90027-8.
  8. N. Kolbe. Implementation of central schemes for networks of scalar conservation laws. GitHub repository, https://github.com/nklb/CentralNetworkScheme, 2022.
  9. Numerical schemes for coupled systems of nonconservative hyperbolic equations, 2023.
  10. T.-P. Liu. Hyperbolic conservation laws with relaxation. Commun.Math. Phys., 108(1):153–175, Mar. 1987. URL: http://link.springer.com/10.1007/BF01210707, doi:10.1007/BF01210707.
  11. J. Peiró and A. Veneziani. Reduced models of the cardiovascular system. In Cardiovascular mathematics, volume 1 of MS&A. Model. Simul. Appl., pages 347–394. Springer Italia, Milan, 2009. URL: https://doi.org/10.1007/978-88-470-1152-6_10, doi:10.1007/978-88-470-1152-6_10.
  12. Numerical simulation of thrombus aspiration in two realistic models of catheter tips. Artificial organs, 34 4:301–10, 2010. doi:10.1111/j.1525-1594.2009.00770.x.
  13. Computer modeling of clot retrieval—circle of willis. Front. Neurol., 11, Aug 2020. URL: http://dx.doi.org/10.3389/fneur.2020.00773, doi:10.3389/fneur.2020.00773.
  14. J. A. G. Rhodin. Architecture of the vessel wall. The Cardiovascular System, 1980. URL: https://cir.nii.ac.jp/crid/1573668925426363648.
  15. Global epidemiology of stroke and access to acute ischemic stroke interventions. Neurology, 97(20), Nov. 2021. URL: http://dx.doi.org/10.1212/wnl.0000000000012781, doi:10.1212/wnl.0000000000012781.
  16. Suction force-suction distance relation during aspiration thrombectomy for ischemic stroke: A computational fluid dynamics study. Physics in Medicine, 3:1–8, 2017. doi:10.1016/j.phmed.2016.11.001.
  17. S. Čanić. Blood flow through compliant vessels after endovascular repair: wall deformations induced by the discontinuous wall properties. Comput. Vis. Sci., 4(3):147–155, 2002. doi:10.1007/s007910100066.
  18. S. Čanić and E. H. Kim. Mathematical analysis of the quasilinear effects in a hyperbolic model blood flow through compliant axi-symmetric vessels. Math. Methods Appl. Sci., 26(14):1161–1186, 2003. doi:10.1002/mma.407.
  19. X. Wang. 1D modeling of blood flow in networks: Numerical computing and applications. PhD thesis, Université Pierre et Marie Curie-Paris VI, 2014.
  20. Perspective on CFD studies of coronary artery disease lesions and hemodynamics: a review. Int. J. Numer. Methods Biomed. Eng., 30(6):659–680, 2014. doi:10.1002/cnm.2625.

Summary

We haven't generated a summary for this paper yet.

Whiteboard

Paper to Video (Beta)

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Continue Learning

We haven't generated follow-up questions for this paper yet.

Collections

Sign up for free to add this paper to one or more collections.