Papers
Topics
Authors
Recent
2000 character limit reached

The Strong Lefschetz Property of Gorenstein Algebras Generated by Relative Invariants (2403.05492v1)

Published 8 Mar 2024 in math.AC

Abstract: We prove the strong Lefschetz property for Artinian Gorenstein algebras generated by the relative invariants of prehomogeneous vector spaces of commutative parabolic type.

Definition Search Book Streamline Icon: https://streamlinehq.com
References (18)
  1. Nilpotent orbits in semisimple Lie algebras. Van Nostrand Reinhold Mathematics Series. Van Nostrand Reinhold Co., New York, 1993.
  2. Rodrigo Gondim. On higher Hessians and the Lefschetz properties. J. Algebra, 489:241–263, 2017.
  3. On cubic hypersurfaces with vanishing hessian. J. Pure Appl. Algebra, 219(4):779–806, 2015.
  4. Lefschetz properties for Artinian Gorenstein algebras presented by quadrics. Proc. Amer. Math. Soc., 146(3):993–1003, 2018.
  5. On mixed Hessians and the Lefschetz properties. J. Pure Appl. Algebra, 223(10):4268–4282, 2019.
  6. The Lefschetz properties, volume 2080 of Lecture Notes in Mathematics. Springer, Heidelberg, 2013.
  7. Sperner property and finite-dimensional Gorenstein algebras associated to matroids. J. Commut. Algebra, 8(4):549–570, 2016.
  8. Strong Lefschetz elements of the coinvariant rings of finite Coxeter groups. Algebr. Represent. Theory, 14(4):625–638, 2011.
  9. Lefschetz elements of Artinian Gorenstein algebras and Hessians of homogeneous polynomials. Illinois J. Math., 53(2):591–603, 2009.
  10. Structure des espaces préhomogènes associés à certaines algèbres de Lie graduées. Math. Ann., 274(1):95–123, 1986.
  11. Strictness of the log-concavity of generating polynomials of matroids. J. Combin. Theory Ser. A, 181:Paper No. 105351, 22, 2021.
  12. Strict log-concavity of the Kirchhoff polynomial and its applications. Sém. Lothar. Combin., 84B:Art. 38, 12, 2020.
  13. Strict log-concavity of the Kirchhoff polynomial and its applications to the strong Lefschetz property. J. Algebra, 577:175–202, 2021.
  14. Hubert Rubenthaler. Algèbres de Lie et espaces préhomogènes, volume 44 of Travaux en Cours [Works in Progress]. Hermann Éditeurs des Sciences et des Arts, Paris, 1992. With a foreword by Jean-Michel Lemaire.
  15. Opérateurs différentiels de Shimura et espaces préhomogènes. Invent. Math., 90(2):409–442, 1987.
  16. M. Sato and T. Kimura. A classification of irreducible prehomogeneous vector spaces and their relative invariants. Nagoya Math. J., 65:1–155, 1977.
  17. Wilfried Schmid. Die Randwerte holomorpher Funktionen auf hermitesch symmetrischen Räumen. Invent. Math., 9:61–80, 1969/70.
  18. Akihito Wachi. Contravariant forms on generalized Verma modules and b𝑏bitalic_b-functions. Hiroshima Math. J., 29(1):193–225, 1999.

Summary

We haven't generated a summary for this paper yet.

Slide Deck Streamline Icon: https://streamlinehq.com

Whiteboard

Dice Question Streamline Icon: https://streamlinehq.com

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

X Twitter Logo Streamline Icon: https://streamlinehq.com

Tweets

This paper has been mentioned in 1 tweet and received 0 likes.

Upgrade to Pro to view all of the tweets about this paper: