Papers
Topics
Authors
Recent
2000 character limit reached

JointMotion: Joint Self-Supervision for Joint Motion Prediction (2403.05489v2)

Published 8 Mar 2024 in cs.CV and cs.RO

Abstract: We present JointMotion, a self-supervised pre-training method for joint motion prediction in self-driving vehicles. Our method jointly optimizes a scene-level objective connecting motion and environments, and an instance-level objective to refine learned representations. Scene-level representations are learned via non-contrastive similarity learning of past motion sequences and environment context. At the instance level, we use masked autoencoding to refine multimodal polyline representations. We complement this with an adaptive pre-training decoder that enables JointMotion to generalize across different environment representations, fusion mechanisms, and dataset characteristics. Notably, our method reduces the joint final displacement error of Wayformer, HPTR, and Scene Transformer models by 3\%, 8\%, and 12\%, respectively; and enables transfer learning between the Waymo Open Motion and the Argoverse 2 Motion Forecasting datasets. Code: https://github.com/kit-mrt/future-motion

Definition Search Book Streamline Icon: https://streamlinehq.com
References (1)
Citations (1)

Summary

We haven't generated a summary for this paper yet.

Whiteboard

Paper to Video (Beta)

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Continue Learning

We haven't generated follow-up questions for this paper yet.

Collections

Sign up for free to add this paper to one or more collections.

Tweets

Sign up for free to view the 1 tweet with 0 likes about this paper.