Papers
Topics
Authors
Recent
Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 63 tok/s
Gemini 2.5 Pro 44 tok/s Pro
GPT-5 Medium 31 tok/s Pro
GPT-5 High 32 tok/s Pro
GPT-4o 86 tok/s Pro
Kimi K2 194 tok/s Pro
GPT OSS 120B 445 tok/s Pro
Claude Sonnet 4.5 35 tok/s Pro
2000 character limit reached

Quantum embedding for molecules using auxiliary particles -- The ghost Gutzwiller Ansatz (2403.05157v1)

Published 8 Mar 2024 in physics.chem-ph and cond-mat.str-el

Abstract: Strong/static electronic correlation mediates the emergence of remarkable phases of matter, and underlies the exceptional reactivity properties in transition metal-based catalysts. Modeling strongly correlated molecules and solids calls for multi-reference Ans\"atze, which explicitly capture the competition of energy scales characteristic of such systems. With the efficient computational screening of correlated solids in mind, the ghost Gutzwiller (gGut) Ansatz has been recently developed. This is a variational Ansatz which can be formulated as a self-consistent embedding approach, describing the system within a non-interacting, quasiparticle model, yet providing with accurate spectra in both low and high energy regimes. Crucially, small fragments of the system are identified as responsible for the strong correlation, and are therefore enhanced by adding a set of auxiliary orbitals, the ghosts. These capture many-body correlations through one-body fluctuations and subsequent out-projection when computing physical observables. gGut has been shown to accurately describe multi-orbital lattice models at modest computational cost. In this work, we extend the gGut framework to strongly correlated molecules. To adapt the gGut Ansatz for molecular calculations, we address the fact that, unlike in the lattice model previously considered, electronic interactions in molecules are not local. Hence, we explore a hierarchy of approximations of increasing accuracy capturing interactions between fragments and environment, and within the environment, and discuss how these affect the embedding description of correlations in the whole molecule. We will compare the accuracy of the gGut model with established methods to capture strong correlation within active space formulations, and assess the realistic use of this novel approximation to the theoretical description of correlated molecular clusters.

Definition Search Book Streamline Icon: https://streamlinehq.com
References (62)
  1. Editorial, The rise of quantum materials, Nat. Phys. 13, 105 (2016).
  2. N. P. Armitage, P. Fournier, and R. L. Greene, Progress and perspectives on electron-doped cuprates, Rev. Mod. Phys. 82, 2421 (2010).
  3. Z. Yin, K. Haule, and G. Kotliar, Kinetic frustration and the nature of the magnetic and paramagnetic states in iron pnictides and iron chalcogenides, Nat. Mat. 10, 932 (2011).
  4. L. de’ Medici, G. Giovannetti, and M. Capone, Selective mott physics as a key to iron superconductors, Phys. Rev. Lett. 112, 177001 (2014).
  5. P. Villar Arribi and L. de’ Medici, Hund’s metal crossover and superconductivity in the 111 family of iron-based superconductors, Phys. Rev. B 104, 125130 (2021).
  6. T. Egami, S. Ishihara, and M. Tachiki, Lattice effect of strong electron correlation: Implication for ferroelectricity and superconductivity, Science 261, 1307 (1993).
  7. M. Fabrizio, A. O. Gogolin, and A. A. Nersesyan, From band insulator to mott insulator in one dimension, Phys. Rev. Lett. 83, 2014 (1999).
  8. Z.-D. Song and B. A. Bernevig, Magic-angle twisted bilayer graphene as a topological heavy fermion problem, Phys. Rev. Lett. 129, 047601 (2022).
  9. H. Chen, M. Ikeda-Saito, and S. Shaik, Nature of the fe-o2 bonding in oxy-myoglobin: Effect of the protein, J. Am. Chem. Soc. 130, 14778 (2008), pMID: 18847206.
  10. H. Lee, C. Weber, and E. B. Linscott, Many-body study of iron(iii)-bound human serum transferrin, J. Phys. Chem. Lett. 13, 4419 (2022).
  11. M. Imada, A. Fujimori, and Y. Tokura, Metal-insulator transitions, Rev. Mod. Phys. 70, 1039 (1998).
  12. P. A. Lee, N. Nagaosa, and X.-G. Wen, Doping a mott insulator: Physics of high-temperature superconductivity, Rev. Mod. Phys. 78, 17 (2006).
  13. R. M. Martin, L. Reining, and D. M. Ceperley, Interacting Electrons: Theory and Computational Approaches (Cambridge University Press, 2016).
  14. U. Schollwöck, The density-matrix renormalization group in the age of matrix product states, Ann. Phys. 326, 96 (2011).
  15. F. Becca and S. Sorella, Quantum Monte Carlo Approaches for Correlated Systems (Cambridge University Press, 2017).
  16. G. Kotliar and E. Abrahams, Correlated electrons in delta-plutonium within a dynamical mean-field picture, Nature 410, 793 (2001).
  17. J. H. Shim, K. Haule, and G. Kotliar, Modeling the Localized-to-Itinerant Electronic Transition in the Heavy Fermion System CeIrIn55{}_{5}start_FLOATSUBSCRIPT 5 end_FLOATSUBSCRIPT, Science 318, 1615 (2007).
  18. H. Park, A. J. Millis, and C. A. Marianetti, Computing total energies in complex materials using charge self-consistent dft + dmft, Phys. Rev. B 90, 235103 (2014).
  19. K. Haule and T. Birol, Free energy from stationary implementation of the DFT+DMFTDFTDMFT\mathrm{DFT}+\mathrm{DMFT}roman_DFT + roman_DMFT functional, Phys. Rev. Lett. 115, 256402 (2015).
  20. A. Paul and T. Birol, Applications of dft+ dmft in materials science, Annu. Rev. Mater. Res. 49, 31 (2019).
  21. G. Knizia and G. K.-L. Chan, Density matrix embedding: A simple alternative to dynamical mean-field theory, Phys. Rev. Lett. 109, 186404 (2012).
  22. S. Sekaran, O. Bindech, and E. Fromager, A unified density matrix functional construction of quantum baths in density matrix embedding theory beyond the mean-field approximation, J. Chem. Phys. 159, 034107 (2023).
  23. E. Fertitta and G. H. Booth, Rigorous wave function embedding with dynamical fluctuations, Phys. Rev. B 98, 235132 (2018).
  24. A. A. Kananenka, E. Gull, and D. Zgid, Systematically improvable multiscale solver for correlated electron systems, Phys. Rev. B 91, 121111 (2015).
  25. T. N. Lan, A. A. Kananenka, and D. Zgid, Communication: Towards ab initio self-energy embedding theory in quantum chemistry, J. Chem. Phys. 143, 241102 (2015).
  26. D. Guerci, M. Capone, and M. Fabrizio, Exciton mott transition revisited, Phys. Rev. Mater. 3, 054605 (2019).
  27. C. Mejuto-Zaera and M. Fabrizio, Efficient computational screening of strongly correlated materials: Multiorbital phenomenology within the ghost gutzwiller approximation, Phys. Rev. B 107, 235150 (2023).
  28. T.-H. Lee, N. Lanatà, and G. Kotliar, Accuracy of ghost rotationally invariant slave-boson and dynamical mean field theory as a function of the impurity-model bath size, Phys. Rev. B 107, L121104 (2023b).
  29. D. Guerci, M. Capone, and N. Lanatà, Time-dependent ghost gutzwiller nonequilibrium dynamics, Phys. Rev. Res. 5, L032023 (2023).
  30. M. C. Gutzwiller, Effect of correlation on the ferromagnetism of transition metals, Phys. Rev. Lett. 10, 159 (1963).
  31. M. C. Gutzwiller, Correlation of electrons in a narrow s𝑠sitalic_s band, Phys. Rev. 137, A1726 (1965).
  32. J. Bünemann, W. Weber, and F. Gebhard, Multiband gutzwiller wave functions for general on-site interactions, Phys. Rev. B 57, 6896 (1998).
  33. M. Fabrizio, Gutzwiller description of non-magnetic mott insulators: Dimer lattice model, Phys. Rev. B 76, 165110 (2007).
  34. M. Fabrizio, Quantum fluctuations beyond the gutzwiller approximation, Phys. Rev. B 95, 075156 (2017).
  35. M. Casula and S. Sorella, Geminal wave functions with Jastrow correlation: A first application to atoms, J. Chem. Phys. 119, 6500 (2003).
  36. M. Casula, C. Attaccalite, and S. Sorella, Correlated geminal wave function for molecules: An efficient resonating valence bond approach, J. Chem. Phys. 121, 7110 (2004).
  37. E. Neuscamman, Size consistency error in the antisymmetric geminal power wave function can be completely removed, Phys. Rev. Lett. 109, 203001 (2012).
  38. P. Romaniello, F. Bechstedt, and L. Reining, Beyong G⁢W𝐺𝑊GWitalic_G italic_W approximation: Combining correlation channels, Phys. Rev. B 85, 155131 (2012).
  39. C. Mejuto-Zaera and V. Vlček, Self-consistency in g⁢w⁢Γ𝑔𝑤Γgw\mathrm{\Gamma}italic_g italic_w roman_Γ formalism leading to quasiparticle-quasiparticle couplings, Phys. Rev. B 106, 165129 (2022).
  40. S. Giarrusso and P.-F. Loos, Exact excited-state functionals of the asymmetric hubbard dimer, J. Phys. Chem. Lett. 14, 8780 (2023).
  41. G. Riva, P. Romaniello, and J. A. Berger, Multichannel dyson equation: Coupling many-body green’s functions, Phys. Rev. Lett. 131, 216401 (2023).
  42. R. Orlando, P. Romaniello, and P.-F. Loos, Exploring new exchange-correlation kernels in the bethe-salpeter equation: a study of the asymmetric hubbard dimer, arXiv preprint arXiv:2302.06679  (2023), 2302.06679 [physics.chem-ph] .
  43. G. Knizia and G. K.-L. Chan, Density matrix embedding: A strong-coupling quantum embedding theory, J. Chem. Theory Comput. 9, 1428 (2013).
  44. J. Lee and K. Haule, Dynamical mean field theory for diatomic molecules and the exact double counting, Phys. Rev. B 91, 155144 (2015).
  45. A. Marie and P.-F. Loos, Reference energies for valence ionizations and satellite transitions, arXiv preprint arXiv:2402.13877  (2024), 2402.13877 [physics.chem-ph] .
  46. P.-F. Loos, A. Marie, and A. Ammar, Cumulant green’s function methods for molecules, arXiv preprint arXiv:2402.16414  (2024), 2402.16414 [physics.chem-ph] .
  47. L. Noodleman, D. A. Case, and A. Aizman, Broken symmetry analysis of spin coupling in iron-sulfur clusters, J. Am. Chem. Soc. 110, 1001 (1988).
  48. I. Pasqua, C. Mejuto-Zaera, and M. Fabrizio, In preparation, In preparation .
  49. D. Zgid and G. K.-L. Chan, Dynamical mean-field theory from a quantum chemical perspective, J. Chem. Phys. 134, 094115 (2011).
  50. D. Zgid, E. Gull, and G. K.-L. Chan, Truncated configuration interaction expansions as solvers for correlated quantum impurity models and dynamical mean-field theory, Phys. Rev. B 86, 165128 (2012).
  51. A. Go and A. J. Millis, Spatial correlations and the insulating phase of the high-t c cuprates: Insights from a configuration-interaction-based solver for dynamical mean field theory, Phys. Rev. Lett. 114, 016402 (2015).
  52. A. Go and A. J. Millis, Adaptively truncated hilbert space based impurity solver for dynamical mean-field theory, Phys. Rev. B 96, 085139 (2017).
  53. C. Mejuto-Zaera, N. M. Tubman, and K. B. Whaley, Dynamical mean field theory simulations with the adaptive sampling configuration interaction method, Physical Review B 100, 125165 (2019).
  54. D. Werner, J. Lotze, and E. Arrigoni, Configuration interaction based nonequilibrium steady state impurity solver, Phys. Rev. B 107, 075119 (2023).
  55. U. Schollwöck, The density-matrix renormalization group, Rev. Mod. Phys. 77, 259 (2005).
  56. Y. N. Fernández, D. García, and K. Hallberg, The two orbital hubbard model in a square lattice: a dmft + dmrg approach, J. Phys. Conf. Ser. 568, 042009 (2014).
  57. Y. Núñez Fernández and K. Hallberg, Solving the multi-site and multi-orbital dynamical mean field theory using density matrix renormalization, Front. Phys. 6, 13 (2018).
  58. T. Zhu, Z.-H. Cui, and G. K.-L. Chan, Efficient formulation of ab initio quantum embedding in periodic systems: Dynamical mean-field theory, J. Chem. Theory Comput. 16, 141 (2019b).
  59. A. Shee and D. Zgid, Coupled cluster as an impurity solver for green’s function embedding methods, J. Chem. Theory Comput. 15, 6010 (2019).
  60. T. Zhu, Z.-H. Cui, and G. K.-L. Chan, Efficient formulation of ab initio quantum embedding in periodic systems: Dynamical mean-field theory, J. Chem. Theory Comput. 16, 141 (2020), pMID: 31815457.
  61. Z.-H. Cui, T. Zhu, and G. K.-L. Chan, Efficient implementation of ab initio quantum embedding in periodic systems: Density matrix embedding theory, J. Chem. Theory Comput. 16, 119 (2020), pMID: 31815466.
  62. T. Zhu and G. K.-L. Chan, Ab initio full cell g⁢w+DMFT𝑔𝑤DMFTgw+\mathrm{DMFT}italic_g italic_w + roman_DMFT for correlated materials, Phys. Rev. X 11, 021006 (2021).
Citations (3)

Summary

We haven't generated a summary for this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

Authors (1)

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

X Twitter Logo Streamline Icon: https://streamlinehq.com

Tweets

This paper has been mentioned in 1 post and received 9 likes.

Don't miss out on important new AI/ML research

See which papers are being discussed right now on X, Reddit, and more:

“Emergent Mind helps me see which AI papers have caught fire online.”

Philip

Philip

Creator, AI Explained on YouTube