Papers
Topics
Authors
Recent
AI Research Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 80 tok/s
Gemini 2.5 Pro 49 tok/s Pro
GPT-5 Medium 26 tok/s Pro
GPT-5 High 32 tok/s Pro
GPT-4o 92 tok/s Pro
Kimi K2 182 tok/s Pro
GPT OSS 120B 438 tok/s Pro
Claude Sonnet 4 38 tok/s Pro
2000 character limit reached

Monodromy of stratified braid groups, II (2403.04496v2)

Published 7 Mar 2024 in math.GT and math.GR

Abstract: The space of monic squarefree polynomials has a stratification according to the multiplicities of the critical points, called the equicritical stratification. Tracking the positions of roots and critical points, there is a map from the fundamental group of a stratum into a braid group. We give a complete determination of this map. It turns out to be characterized by the geometry of the translation surface structure on $\mathbb{CP}1$ induced by the logarithmic derivative $df/f$ of a polynomial in the stratum.

Definition Search Book Streamline Icon: https://streamlinehq.com
References (16)
  1. A. Calderon and N. Salter. Framed mapping class groups and the monodromy of strata of abelian differentials. J. Eur. Math. Soc. (JEMS), 25(12):4719–4790, 2023.
  2. M. Dougherty and J. McCammond. Geometric combinatorics of polynomials II: the critical value complex. In preparation.
  3. M. Dougherty and J. McCammond. Geometric combinatorics of polynomials I: The case of a single polynomial. J. Algebra, 607(part B):106–138, 2022.
  4. B. Farb and D. Margalit. A primer on mapping class groups, volume 49 of Princeton Mathematical Series. Princeton University Press, Princeton, NJ, 2012.
  5. Q. Gendron and G. Tahar. Différentielles abéliennes à singularités prescrites. J. Éc. polytech. Math., 8:1397–1428, 2021.
  6. Q. Gendron and G. Tahar. Isoresidual fibration and resonance arrangements. Lett. Math. Phys., 112(2):Paper No. 33, 36, 2022.
  7. A. Hatcher and K. Vogtmann. Tethers and homology stability for surfaces. Algebr. Geom. Topol., 17(3):1871–1916, 2017.
  8. M. Kontsevich and A. Zorich. Lyapunov exponents and Hodge theory. Preprint, https://arxiv.org/abs/hep-th/9701164, 1997.
  9. M. Kontsevich and A. Zorich. Connected components of the moduli spaces of Abelian differentials with prescribed singularities. Invent. Math., 153(3):631–678, 2003.
  10. E. Looijenga and G. Mondello. The fine structure of the moduli space of abelian differentials in genus 3. Geom. Dedicata, 169:109–128, 2014.
  11. J. McCammond. Dual braids and the braid arrangement. Preprint, https://web.math.ucsb.edu/ jon.mccammond/papers/dual-braid-arrangement-survey.pdf, 2022.
  12. A. Putman. A note on the connectivity of certain complexes associated to surfaces. Enseign. Math. (2), 54(3-4):287–301, 2008.
  13. N. Salter. Monodromy and vanishing cycles in toric surfaces. Invent. Math., 216(1):153–213, 2019.
  14. N. Salter. Stratified braid groups: monodromy. Preprint, https://arxiv.org/abs/2304.04627, 2023.
  15. Degree-d𝑑ditalic_d-invariant laminations. In What’s next?—the mathematical legacy of William P. Thurston, volume 205 of Ann. of Math. Stud., pages 259–325. Princeton Univ. Press, Princeton, NJ, 2020.
  16. A. Wright. Translation surfaces and their orbit closures: an introduction for a broad audience. EMS Surv. Math. Sci., 2(1):63–108, 2015.
Citations (1)

Summary

We haven't generated a summary for this paper yet.

Lightbulb On Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

Authors (1)

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

X Twitter Logo Streamline Icon: https://streamlinehq.com

Tweets

This paper has been mentioned in 1 post and received 0 likes.