Papers
Topics
Authors
Recent
Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 134 tok/s
Gemini 2.5 Pro 41 tok/s Pro
GPT-5 Medium 28 tok/s Pro
GPT-5 High 22 tok/s Pro
GPT-4o 72 tok/s Pro
Kimi K2 211 tok/s Pro
GPT OSS 120B 438 tok/s Pro
Claude Sonnet 4.5 37 tok/s Pro
2000 character limit reached

Medium Assisted Low Energy Nuclear Fusion (2403.04428v1)

Published 7 Mar 2024 in nucl-th

Abstract: We study the process of nuclear fusion at low energies in a medium using the second order time dependent perturbation theory. We consider a specific process which involves fusion of a low energy proton with a Nickel nucleus. The reaction proceeds in two steps or interactions. We refer to the amplitudes corresponding to these two interactions as the the molecular and the nuclear matrix elements. The first amplitude involves Coulomb interaction with another nucleus in the medium while the second corresponds to the nuclear fusion process. It has been shown in earlier papers that such a second order process has negligible amplitude unless it is assisted by special medium effects. In the present paper we show the presence of a special configuration of atoms which greatly enhances the process. We find that if the spacings among the atoms can be tuned, the rate can be sufficiently enhanced so that easily observable. The spacings do not require acute fine tuning, however, if they are significantly off the rate falls sharply to negligible values. This might also explain both the successes and failures experienced by many experimentalists studying this phenomenon. We study only a particular final state which involves emission of one photon. However we show that many final states are possible which need not involve photon emission.

Definition Search Book Streamline Icon: https://streamlinehq.com
References (31)
  1. John Wiley & Sons, Ltd, 2011.
  2. J. P. Biberian (Ed.), Cold Fusion: Advances in Condensed Matter Nuclear Science. Elsevier, 2020.
  3. A. Huke, K. Czerski, P. Heide, G. Ruprecht, N. Targosz, and W. Żebrowski, “Enhancement of deuteron-fusion reactions in metals and experimental implications,” Phys. Rev. C, vol. 78, p. 015803, Jul 2008.
  4. E. Storms, “Introduction to the main experimental findings of the lenr field,” Current Science, vol. 108, pp. 535–539, 02 2015.
  5. M. McKubre, “Cold fusion – cmns – lenr; past, present and projected future status,” Journal of Condensed Matter Nuclear Science, vol. 19, pp. 183–191, 2016.
  6. F. Celani, B. Ortenzi, A. Spallone, C. Lorenzetti, E. Purchi, S. Fiorilla, S. Cupellini, M. Nakamura, P. Boccanera, L. Notargiacomo, G. Vassallo, and R. Burri, “Steps to identify main parameters for ahe generation in sub-micrometric materials: Measurements by isoperibolic and air-flow calorimetry,” Journal of Condensed Matter Nuclear Science, vol. 29, pp. 52–74, 2019.
  7. T. Mizuno and J. Rothwell, “Excess heat from palladium deposited on nickel,” Journal of Condensed Matter Nuclear Science, vol. 29, pp. 21–33, 2019.
  8. M. Srinivasan and K. Rajeev, “Chapter 13 - transmutations and isotopic shifts in lenr experiments,” in Cold Fusion (J.-P. Biberian, ed.), pp. 233 – 262, Elsevier, 2020.
  9. V. Pines, M. Pines, A. Chait, B. M. Steinetz, L. P. Forsley, R. C. Hendricks, G. C. Fralick, T. L. Benyo, B. Baramsai, P. B. Ugorowski, M. D. Becks, R. E. Martin, N. Penney, and C. E. Sandifer, “Nuclear fusion reactions in deuterated metals,” Phys. Rev. C, vol. 101, p. 044609, Apr 2020.
  10. H. Assenbaum, K. Langanke, and C. Rolfs, “Effects of electron screening on low-energy fusion cross sections,” Zeitschrift für Physik A Atomic Nuclei, vol. 327, no. 4, pp. 461–468, 1987.
  11. S. Ichimaru, “Nuclear fusion in dense plasmas,” Reviews of Modern Physics, vol. 65, no. 2, p. 255, 1993.
  12. V. Vysotskii and M. Vysotskyy, “Coherent correlated states and low-energy nuclear reactions in non stationary systems,” The European Physical Journal A, vol. 49, 08 2013.
  13. S. Bartalucci, V. I. Vysotskii, and M. V. Vysotskyy, “Correlated states and nuclear reactions: An experimental test with low energy beams,” Phys. Rev. Accel. Beams, vol. 22, p. 054503, May 2019.
  14. Y. Srivastava, A. Widom, and L. Larsen, “A primer for electro-weak induced low energy nuclear reactions,” Pramana - Journal of Physics, vol. 75, pp. 617–637, 02 2010.
  15. C. Spitaleri, C. Bertulani, L. Fortunato, and A. Vitturi, “The electron screening puzzle and nuclear clustering,” Physics Letters B, vol. 755, pp. 275 – 278, 2016.
  16. J.-L. Paillet and A. Meulenberg, “On highly relativistic deep electrons,” Journal of Condensed Matter Nuclear Science, vol. 29, pp. 472–492, 02 2019.
  17. P. Hagelstein, “Deuterium evolution reaction model and the fleischmann–pons experiment,” Journal of Condensed Matter Nuclear Science, vol. 16, pp. 46–63, 02 2015.
  18. V. A. Chechin, V. A. Tsarev, M. Rabinowitz, and Y. E. Kim, “Critical review of theoretical models for anomalous effects in deuterated metals,” International Journal of Theoretical Physics, vol. 33, p. 617–670, Mar 1994.
  19. P. Kálmán and T. Keszthelyi, “Forbidden nuclear reactions,” Phys. Rev. C, vol. 99, p. 054620, May 2019.
  20. P. Jain, A. Kumar, R. Pala, and K. P. Rajeev, “Photon induced low-energy nuclear reactions,” Pramana, vol. 96, no. 96, 2022.
  21. P. Jain, A. Kumar, K. Ramkumar, R. Pala, and K. P. Rajeev, “Low energy nuclear fusion with two photon emission,” JCMNS, vol. 35, p. 1, 2021.
  22. K. Ramkumar, H. Kumar, and P. Jain, “A toy model for low energy nuclear fusion,” Pramana, vol. 97, no. 109, 2023.
  23. H. Kumar, P. Jain, and K. Ramkumar, “Low energy nuclear reactions in a crystal lattice,” submitted, 2023.
  24. P. A. Lee and T. V. Ramakrishnan, “Disordered electronic systems,” Rev. Mod. Phys., vol. 57, pp. 287–337, Apr 1985.
  25. E. Abrahams, 50 Years of Anderson Localization. WORLD SCIENTIFIC, 2010.
  26. D. D. Clayton, Principles of stellar evolution and nucleosynthesis. The University of Chicago Press, Chicago, 1968.
  27. E. Merzbacher, Quantum Mechanics. Wiley, 1998.
  28. J. Sakurai, Advanced Quantum Mechanics. Always learning, Pearson Education, Incorporated, 1967.
  29. G. H. Miley and J. A. Patterson, “Nuclear transmutations in thin-film nickel coatings undergoing electrolysis,” Journal of New Energy, vol. 1, no. 3, pp. 5–30, 1996.
  30. K. Rajeev and D. Gaur, “Evidence for nuclear transmutations in ni–h electrolysis,” Journal of Condensed Matter Nuclear Science, vol. 24, pp. 278–283, 2017.
  31. A. Kumar, P. Jain, K. P. Rajeev, and R. G. Pala, “Upper bound in the fusion products and transmutation enhancement in alloys,” Journal of Condensed Matter Nuclear Science, vol. 36, pp. 327–335, year=2022,.
Citations (2)

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

X Twitter Logo Streamline Icon: https://streamlinehq.com

Tweets

This paper has been mentioned in 1 tweet and received 1 like.

Upgrade to Pro to view all of the tweets about this paper: