Papers
Topics
Authors
Recent
2000 character limit reached

Sentiment-driven prediction of financial returns: a Bayesian-enhanced FinBERT approach (2403.04427v1)

Published 7 Mar 2024 in cs.CE and cs.AI

Abstract: Predicting financial returns accurately poses a significant challenge due to the inherent uncertainty in financial time series data. Enhancing prediction models' performance hinges on effectively capturing both social and financial sentiment. In this study, we showcase the efficacy of leveraging sentiment information extracted from tweets using the FinBERT LLM. By meticulously curating an optimal feature set through correlation analysis and employing Bayesian-optimized Recursive Feature Elimination for automatic feature selection, we surpass existing methodologies, achieving an F1-score exceeding 70% on the test set. This success translates into demonstrably higher cumulative profits during backtested trading. Our investigation focuses on real-world SPY ETF data alongside corresponding tweets sourced from the StockTwits platform.

Definition Search Book Streamline Icon: https://streamlinehq.com
References (18)
  1. R. G. Cestari, F. Barchi, R. Busetto, D. Marazzina, and S. Formentin, “Hawkes-based cryptocurrency forecasting via limit order book data,” arXiv preprint arXiv:2312.16190, 2023.
  2. Y. Xu and V. Keselj, “Stock prediction using deep learning and sentiment analysis,” in 2019 IEEE international conference on big data (big data).   IEEE, 2019, pp. 5573–5580.
  3. J.-X. Liu, J.-S. Leu, and S. Holst, “Stock price movement prediction based on stocktwits investor sentiment using finbert and ensemble svm,” PeerJ Computer Science, vol. 9, p. e1403, 2023.
  4. P. Koukaras, C. Nousi, and C. Tjortjis, “Stock market prediction using microblogging sentiment analysis and machine learning,” in Telecom, vol. 3, no. 2.   MDPI, 2022, pp. 358–378.
  5. C. Hutto and E. Gilbert, “Vader: A parsimonious rule-based model for sentiment analysis of social media text,” in Proceedings of the international AAAI conference on web and social media, vol. 8, no. 1, 2014, pp. 216–225.
  6. X. Man, T. Luo, and J. Lin, “Financial sentiment analysis(fsa): A survey,” in 2019 IEEE International Conference on Industrial Cyber Physical Systems (ICPS), 2019, pp. 617–622.
  7. R. Gupta and M. Chen, “Sentiment analysis for stock price prediction,” in 2020 IEEE conference on multimedia information processing and retrieval (MIPR).   IEEE, 2020, pp. 213–218.
  8. A. Mittal and A. Goel, “Stock prediction using twitter sentiment analysis,” Standford University, CS229, vol. 15, p. 2352, 2012.
  9. V. S. Pagolu, K. N. Reddy, G. Panda, and B. Majhi, “Sentiment analysis of twitter data for predicting stock market movements,” in 2016 international conference on signal processing, communication, power and embedded system (SCOPES).   IEEE, 2016, pp. 1345–1350.
  10. D. Araci, “Finbert: Financial sentiment analysis with pre-trained language models,” arXiv preprint arXiv:1908.10063, 2019.
  11. J. Devlin, M.-W. Chang, K. Lee, and K. Toutanova, “Bert: Pre-training of deep bidirectional transformers for language understanding,” arXiv preprint arXiv:1810.04805, 2018.
  12. P. Malo, A. Sinha, P. Korhonen, J. Wallenius, and P. Takala, “Good debt or bad debt: Detecting semantic orientations in economic texts,” Journal of the Association for Information Science and Technology, vol. 65, no. 4, pp. 782–796, 2014.
  13. J. Z. G. Hiew, X. Huang, H. Mou, D. Li, Q. Wu, and Y. Xu, “Bert-based financial sentiment index and lstm-based stock return predictability,” arXiv preprint arXiv:1906.09024, 2019.
  14. I. Dewancker, M. McCourt, and S. Clark, “Bayesian optimization for machine learning: A practical guidebook,” arXiv preprint arXiv:1612.04858, 2016.
  15. A. Parmar, R. Katariya, and V. Patel, “A review on random forest: An ensemble classifier,” in International conference on intelligent data communication technologies and internet of things (ICICI) 2018.   Springer, 2019, pp. 758–763.
  16. A. Fernández, S. Garcia, F. Herrera, and N. V. Chawla, “Smote for learning from imbalanced data: progress and challenges, marking the 15-year anniversary,” Journal of artificial intelligence research, vol. 61, pp. 863–905, 2018.
  17. M. Skurichina and R. P. Duin, “Bagging for linear classifiers,” Pattern Recognition, vol. 31, no. 7, pp. 909–930, 1998.
  18. C. Cortes and V. Vapnik, “Support-vector networks,” Machine learning, vol. 20, pp. 273–297, 1995.

Summary

We haven't generated a summary for this paper yet.

Slide Deck Streamline Icon: https://streamlinehq.com

Whiteboard

Dice Question Streamline Icon: https://streamlinehq.com

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.