Distribution of power residues over shifted subfields and maximal cliques in generalized Paley graphs (2403.04312v2)
Abstract: We derive an asymptotic formula for the number of solutions in a given subfield to certain system of equations over finite fields. As an application, we construct new families of maximal cliques in generalized Paley graphs. Given integers $d\ge2$ and $q \equiv 1 \pmod d$, we show that for each positive integer $m$ such that $\operatorname{rad}(m) \mid \operatorname{rad}(d)$, there are maximal cliques of size approximately $q/m$ in the $d$-Paley graph defined on $\mathbb{F}_{qd}$. We also confirm a conjecture of Goryainov, Shalaginov, and the second author on the maximality of certain cliques in generalized Paley graphs, as well as an analogous conjecture of Goryainov for Peisert graphs.
- S. Asgarli and C. H. Yip. Van Lint–MacWilliams’ conjecture and maximum cliques in Cayley graphs over finite fields. J. Combin. Theory Ser. A, 192:Paper No. 105667, 23, 2022.
- Maximal cliques in the Paley graph of square order. J. Statist. Plann. Inference, 56(1):33–38, 1996. Special issue on orthogonal arrays and affine designs, Part I.
- A. Blokhuis. On subsets of GF(q2)GFsuperscript𝑞2{\rm GF}(q^{2})roman_GF ( italic_q start_POSTSUPERSCRIPT 2 end_POSTSUPERSCRIPT ) with square differences. Nederl. Akad. Wetensch. Indag. Math., 46(4):369–372, 1984.
- Distance-regular graphs, volume 18 of Ergebnisse der Mathematik und ihrer Grenzgebiete (3) [Results in Mathematics and Related Areas (3)]. Springer-Verlag, Berlin, 1989.
- S. D. Cohen. Clique numbers of Paley graphs. Quaestiones Math., 11(2):225–231, 1988.
- E. S. Croot, III and V. F. Lev. Open problems in additive combinatorics. In Additive combinatorics, volume 43 of CRM Proc. Lecture Notes, pages 207–233. Amer. Math. Soc., Providence, RI, 2007.
- C. Godsil and K. Meagher. Erdős-Ko-Rado theorems: algebraic approaches, volume 149 of Cambridge Studies in Advanced Mathematics. Cambridge University Press, Cambridge, 2016.
- On eigenfunctions and maximal cliques of Paley graphs of square order. Finite Fields Appl., 52:361–369, 2018.
- On a correspondence between maximal cliques in Paley graphs of square order. Discrete Math., 345(6):Paper No. 112853, 10, 2022.
- On eigenfunctions and maximal cliques of generalised Paley graphs of square order. Finite Fields Appl., 87:Paper No. 102150, 2023.
- J. W. P. Hirschfeld and T. Szőnyi. Constructions of large arcs and blocking sets in finite planes. European J. Combin., 12(6):499–511, 1991.
- J. W. P. Hirschfeld and T. Szőnyi. A problem on squares in a finite field and its application to geometry. In Advances in finite geometries and designs (Chelwood Gate, 1990), Oxford Sci. Publ., pages 169–176. Oxford Univ. Press, New York, 1991.
- R. Lidl and H. Niederreiter. Finite fields, volume 20 of Encyclopedia of Mathematics and its Applications. Cambridge University Press, Cambridge, second edition, 1997.
- W. Peisert. All self-complementary symmetric graphs. J. Algebra, 240(1):209–229, 2001.
- M. Rosen. Number theory in function fields, volume 210 of Graduate Texts in Mathematics. Springer-Verlag, New York, 2002.
- T. Szőnyi. Note on the existence of large minimal blocking sets in Galois planes. Combinatorica, 12(2):227–235, 1992.
- T. Szőnyi. Some applications of algebraic curves in finite geometry and combinatorics. In Surveys in combinatorics, 1997 (London), volume 241 of London Math. Soc. Lecture Note Ser., pages 197–236. Cambridge Univ. Press, Cambridge, 1997.
- P. Sziklai. On subsets of GF(q2)GFsuperscript𝑞2{\rm GF}(q^{2})roman_GF ( italic_q start_POSTSUPERSCRIPT 2 end_POSTSUPERSCRIPT ) with d𝑑ditalic_dth power differences. Discrete Math., 208/209:547–555, 1999.
- P. Sziklai. A lemma on the randomness of d𝑑ditalic_d-th powers in GF(q),d∣q−1GF𝑞conditional𝑑𝑞1{\rm GF}(q),\ d\mid q-1roman_GF ( italic_q ) , italic_d ∣ italic_q - 1. Bull. Belg. Math. Soc. Simon Stevin, 8(1):95–98, 2001.
- D. Wan. Generators and irreducible polynomials over finite fields. Math. Comp., 66(219):1195–1212, 1997.
- C. H. Yip. On maximal cliques of Cayley graphs over fields. J. Algebraic Combin., 56(2):323–333, 2022.
- C. H. Yip. Exact values and improved bounds on the clique number of cyclotomic graphs, 2023. arXiv:2304.13213.
- C. H. Yip. Maximality of subfields as cliques in Cayley graphs over finite fields. Algebr. Comb., 6(4):901–905, 2023.
- C. H. Yip. Erdős–Ko–Rado theorem in Peisert-type graphs. Canad. Math. Bull., 67(1):176–187, 2024.
Sponsor
Paper Prompts
Sign up for free to create and run prompts on this paper using GPT-5.
Top Community Prompts
Collections
Sign up for free to add this paper to one or more collections.